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INTRODUCTION 

Folded structure (FS) is a facet surface composed of typical recurrent fragments that may be unfolded 
into a plane. Each fragment is a combination of flat faces connected along the edges. Folded structures 
may serve as geometric basis of light cores for sandwich panels [1−4], sound absorbing structures [5−7], 
plates of heat exchangers [8], filters [9], radio scattering shells [10], compound-chain mechanisms. 

If we imagine that the faces of the FS can turn around the edges connecting them, we may speak about 
transformation of the structure. 

Mutual arrangement of the faces changes during transformation. In the initial position, all faces are in 
the same plane. In the final position, structure becomes either a compact block with faces completely 
adjacent to each other, either a block with faces in plane, or a cellular block (Fig. 1) [11]. 

So, transformation is a process of transition from one extreme state of the FS into the other ones 
involving the change of the density of the FS surface relief. 

Each structure follows its own transformation principles. One has to know these principles when 
designing the manufacturing process for the forming of these structures and calculating parameters of 
equipment. The same goes for mechanisms (deployable frames for solar panels and antennas) that have 
deployment kinematics based on folded structures. 

It is reasonable to describe transformation based on the principles of FS nodal points’ displacement 
based on a trigger factor. A tailored approach of two nodes in the structure or a change of an angle 
between two edges may be a trigger factor. 

Each folded structure has its own principles of nodal points’ displacement. At the same time, 
the common principles for construction of transformation model, same for any structure, were developed 
in [12]. Simulation of transformation is based on construction of a vector model of a typical fragment. All 
the nodal points are defined by the system of interconnected vectors in a given coordinate system. This 
technique is applied in a range of works [13−17] and all the research in these papers deal with design of 
modified four-rayed structures. 
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(a)    (b)    (c) 

Fig. 1. Transformation of structure: (a)⎯flat state (developed view); (b)⎯transformation; (c)⎯final state. 

Meanwhile, another group of folded structures, namely, hexactinal structures, is of great interest. 
These structures have a wider range of architectures and variants of future application. They are described 
in [18−20] together with methods of their synthesis. 

The aim of this research is to create a vector model for transformation of hexactinal folded structures 
[18].  

PROBLEM DESCRIPTION 

Figure 2a demonstrates a hexactinal structure in variant A [17]. This structure has a pattern shown in 
Fig. 2b. It consists of periodically recurrent typical fragments (Fig. 2c)—elementary units. Each 
elementary unit consists of six interconnected triangles with edges between them. The elementary unit 
contains all the nesessary information about geometry of the structure. If the principles of transformation 
of this elementary unit are determined, it is possible to talk about solution of the problem for the entire 
structure. 

To construct a vector model of the elementary unit, it should be put into x, y, z (Fig. 2d) coordinates 
system with the center in the point, where six edges intersect. Let us place vectors 0

3r  along each edge. 

The developed view of such an elementary unit with vectors is demonstrated in Fig. 2d. Let us assume 
that vectors 0

3r  and 0
7r  stay in the plane Oxy during transformation. Rotation of vector 0

7r  in the plane Oxy 

around the origin is a factor initiating transformation (Fig. 2e). Due to the fact that all vectors are 
interconnected by the edges, initiating movement of vector 0

7r  leads to transformation of the entire unit. 

The termini of the vectors except for 0
3r  and 0

7r  are getting out of the plane. The problem will be solved, 

if the equations for the movement paths of vectors’ termini are defined. 
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(a) (b) (c)

(d) (e)

Fig. 2. Hexactinal folded structure: (a)⎯the structure; (b)⎯the developed view; (c)⎯the elementary unit; 
(d)⎯the vector model; (e)⎯the vector model on the plane (notations with superscripts are related to vectors’ termini, e.g. 

50 is related to 0
5r ). 

Initial geometrical precondition for the equations deduction is the fact that the vector lengths (sides of 
the faces) as well as areas of triangular faces stay the same during transformation. 

Thus, in the initial state, interconnected six triangles are located on the plane xyO . Geometry of 

the triangles is determined by vectors 0
1r , 0

8r , 0
7r , 0

5r , 0
3r , 0

2r , which termini are specified in Fig. 2e. 

The triangles are located symmetrically relatively to the plane xzO . Here and further in the text, zero 

superscripts mean that the vectors and their components are located in the plane xyO . When the triangles 

move in the space xyzO , vectors 3r , 7r  stay in the plane xyO , i.e. { }3 3, 3,, , 0x yr r r= , { }7 7, 7,, ,0x yr r r= . In 

the general case, 3 7r r≠ , however, 3 7r r= . Triangles in the plane xyO  initially have areas 0 0
75 53S S= ; 

0 0
32 87S S= ; 0 0

21 18S S= . 

With angular displacement of vectors { }3 3, 3,, , 0x yr r r= , { }7 7, 7,, ,0x yr r r=  on the plane xyO , vectors 5r , 

2r , 1r , and 8r  are located in the space xyzO . 

Thus, given the values of projection of vectors 3, 3,,x yr r , 7,xr , 7, yr , it is necessary to find location of 

vectors 0
5r , 0

2r , 0
1r , and 0

8r  in the space xyzO , if the modules of these vectors are initially known 
0
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DETERMINING THE AREAS OF TRIANGLES IN THE INITIAL STATE  

Areas of the triangles on the plane xyO  are determined through the vector product of the vectors: 

 ( )0 0 0 0 0 0 0 0 0 0
75 35 7 5 7, 7, 7, 5, 7, 5,

0 0
5, 5,

            
1 1

2 , ,0 , ,
2 2

, ,0

x y x y y x

x y

i j k

S S r r r r r r r r

r r

= = × = = − . 

Since 0
5, 0,xr =  then 0 0 0 0

75 35 7, 5, 2x yS S r r= = . 

Taking into account 0 0 0
1, 1, 8, 0x z zr r r= = =  for areas 0 0

18 12S S= , we get 

 0 0 0 0 0 0 0
18 12 1 8 1, 8, 1,

0 0
8, 8,

1
2 0 0 2

2
0

y x x

x y

i j k

S S r r r r r

r r

= = × = = , 

for areas 0 0
32 87S S= , respectively, 

 ( )0 0 0 0 0 0 0 0 0 0
32 87 3 2 3, 3, 3, 2, 3, 2,

0 0
2, 2,

1
2 0 , , 2.

2
0

x y x y y x

x y

i j k

S S r r r r r r r r

r r

= = × = = −  

Thus, the areas of all triangles on the plane xyO  are defined through the coordinates of the vertices of 

the triangles. 

Values and geometric shapes of these triangles stay the same, when vectors 5r , 2r , 1r  and 8r  move in 

space (Fig. 2c). 

DETERMINING THE VECTORS POSITION IN SPACE 

Determining the position of vector 5r  

Cosine of the angle between vectors 5r  and 3r  is determined by the scalar product of the vectors  

 ( )
( ) ( )5, 3, 5, 5, 5,5 3

5 3
5 3 5 3

0
cos ,

x x y y zr r r r rr r
r r

r r r r

− + +−

= = . 

Here, the minus means that the angle between these two vectors is more than 90 degrees. Sine of 
the angle between these vectors is defined by the area of the triangle based on these vectors 

( ) 0
5 3 5 3 53sin , 2r r r r S= , since 0

53 53S S= , or  

 ( ) ( )
( )

22 22 00
5 3 532 53

5 3 5 3
5 3 5 3

42
cos , 1 sin , 1

r r SS
r r r r

r r r r

−⎛ ⎞
= − = − =⎜ ⎟

⎝ ⎠
. 

Thus, comparing numerators of two latter equations for ( )5 3cos ,r r , we get  

 ( )5, 3, 5, 3, 1x x y yr r r r a− + = , (1) 

where ( )
222 0

1 5 3 534a r r S= − . 
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Similarly for 7r  and 5r , 

 ( )5, 7, 5, 7, 2x x y yr r r r a− + = , (2) 

where ( )
222 0

2 5 7 754a r r S= − . 

From Eqs. (1) and (2), we get a system of two equations to define 5,xr  and 5, yr
 

 3, 5, 3, 5, 1x x y yr r r r a+ = − ;
 

 7, 5, 7, 5, 2x x y yr r r r a+ = − .
 

Solving these equations, we get 

 1 7, 2 3,
5,

3, 7, 3, 7,

;y y
x

x y y x

a r a r
r

r r r r

− +

=

−
 (3) 

 2 3, 1 7,
5,

3, 7, 3, 7,

x x
y

x y y x

a r a r
r

r r r r

− +

=

−

. (4)
 

Keeping in mind that 
2 2 2 2

5 5, 5, 5,x y zr r r r= + + , we get 

 ( )2 2 2 1/2
5, 5 5, 5,z x yr r r r= − − . (5) 

Vector 5r  is determined: { }5 5, 5, 5,, ,x y zr r r r= . 

In Eqs. (1) and (2), if 3 7r r= , 53 75S S= , then 1 2a a= . 

Similarly to Eqs. (1) and (2), considering vectors 7r  and 8r , we get 

 7, 8, 7, 8, 3x x y yr r r r a+ = , (7)  

where ( )
222 0

3 7 8 784a r r S= − .  

For vectors 3r  and 2r , we get  

 3, 2, 3, 2, 4x x y yr r r r a+ = ,  (8) 

where ( )
222 0

4 3 2 324a r r S= − . For Eqs. (7) and (8), 3 4a a= .  

For 2r  and 1r , 

 2, 1, 2, 1, 2, 1, 5x x y y z zr r r r r r a+ + = , (9) 

where ( )
222 0

5 2 1 214a r r S= − . 

For vectors 1r  and 8r , 

 1, 8, 1, 8, 1, 8, 6x x y y z zr r r r r r a+ + = , (10) 

where ( )
222 0

6 1 8 184a r r S= − . For Eqs. (9) and (10), 5 6a a= . 

Modules of vectors 1r , 2r ,  and 8r  are known 
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2 2 2 2

1 1, 1, 1,x y zr r r r= + + ;   (11) 

 
2 2 2 2

2 2, 2, 2,x y zr r r r= + + ;      (12) 

 
2 2 2 2

8 8, 8, 8,x y zr r r r= + + . (13) 

So, we have seven equations (7)−(13) and nine unknown components of vectors 1r , 2r , 8r . 

When vector 3r  and 7r  are fixed in the plane xyO  with known components { }3 3, 3,, , 0x yr r r= , 

{ }7 7, 7,, ,0x yr r r= , the line based on vectors 32r , 21r , 18r , 87r  may have two degrees of freedom. For 

the system of describing equations to be closed relative to the vector components, it is necessary to put 
limitations on two of nine components of vectors 1r , 2r , 8r . 

Determining the position of vector 2r  

For determinacy, we assume that parameter 2, constzr =  for the component 2r , and this parameter 

would be considered as known beforehand (it may be determined based on the known geometry of 
the surface, enveloping the termini of the vectors in space). From Eq. (12), we get 

 2 2
2, 2, 7x yr r a+ = ,   

2 2
7 2 2,za r r= − . (14) 

Taking into account Eq. (8), 

 3, 2, 3, 2, 4x x y yr r r r a+ = . (15) 

From Eq. (15), we find  

 ( )2, 4 3, 2, 3,y x x yr a r r r= − . (16) 

After substitution in Eq. (14), 

 ( )2 2 2 2 2
3, 3, 2, 4 3, 2, 4 7 3,2 0y x x x x yr r r a r r a a r+ − + − = . 

Since the vector 3r  stays on the Oxy plane, after substitution 
22 2

3, 3, 3x yr r r+ = , the last equation looks as 

follows 

 
2 2 2 2

3 2, 4 3, 2, 4 7 3,2 0x x x yr r a r r a a r− + − = . (17) 

Thus, knowing 2,zr  and solving Eq. (17), we find 2,xr  and, by substitution in Eq. (16), we get 2, yr . 

Thus, vector 2r  is { }2 2, 2, 2,, ,x y zr r r r= . 

Determining the components of vector 1r  

Equations (9)−(11) are connected to the components of vector 1r . 

Let us introduce the second assumption 1, constzr = . From Eq. (11), 

 2 2
1, 1, 8x yr r a+ = , 

2 2
8 1 1,za r r= − , 

and from Eq. (9), 

 1, 2, 1, 2, 9x x y yr r r r a+ =  , 9 5 1, 2,z za a r r= − .  (18) 
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We get a system of equations for 1,xr and 1, yr  

 
2 2

1, 1, 8

1, 2, 1, 2, 9

;

.
x y

x x y y

r r a

r r r r a

⎧ + =⎪
⎨

+ =⎪⎩
 (19) 

From Eq. (19), ( )1, 9 1, 2, 2,y x x yr a r r r= − , after substitution in the first equation of system (19), we get 

 ( )
22 2

1, 9 2, 1, 2, 8x x x yr a r r r a+ − =  

or  

 ( )
22 2 2

2, 1, 9 2, 1, 8 2,y x x x yr r a r r a r+ − = , 

then 

 ( )2 2 2 2 2
2, 2, 1, 9 2, 1, 9 8 2,2 0y x x x x yr r r a r r a a r+ − + − = . (20) 

Solving quadratic equation (20) for 1,xr , we get two roots 1,xr . Substituting one of the roots 1,xr  into 

the second equation (19), we get component 1, yr . Vector { }1 1, 1, 1,, ,x y zr r r r=  is determined. 

Determining the components of vector 8r  

Note that components of vector 8r  are a part of Eqs. (7), (10), and (13). 

Thus, we have three equations and three components of vector 8r , squared components in Eq. (13) 

make solution more complicated. From Eq. (7), we find ( )8, 3 7, 8, 7,y x x yr a r r r= − , then square this 

equation: ( )2 2 2 2 2
8, 3 3 7, 8, 7, 8, 7,2y x x x x yr a a r r r r r= − + + . Then 8, yr  is substituted in Eq. (10) 1, 8,x xr r +  

( )1, 3 7, 8, 7,y x x yr a r r r− + 1, 8, 6z zr r a= . After transformation, ( )1, 7, 1, 7, 8, 1, 7, 8,x y y x x z y xr r r r r r r r− + = 6 7, 1, 3y ya r r a− . 

Then 2
8, yr  is substituted in Eq. (13) 

 
2 2 2

23 3 7, 8, 7, 8,2 2
8, 8, 82

7,

2 x x x x
y z

y

a a r r r r
r r r

r

− +

+ + = . 

This equation becomes as follows 

 ( ) 22 2 2 2 2 2 2
7, 7, 8, 3 7, 8, 7, 8, 7, 8 32y x x x x y z yr r r a r r r r r r a+ − + = − . 

Taking into account 
22 2

7, 7, 7y xr r r+ = , we get a set of two equations for 8,xr  and 8,zr : 

 
( )

2 22 2 2 2 2
7 8, 3 7, 8, 7, 8, 7, 8 3

1, 7, 1, 7, 8, 1, 7, 8, 6 7, 1, 3

2 ;

.

x x x y z y

x y y x x z y z y y

r r a r r r r r r a

r r r r r r r r a r r a

⎧ − + = −⎪
⎨

− + = −⎪⎩

 (21) 

From the second equation of system (21), we define the product 7, 8,y zr r : 

 ( ) ( )7, 8, 6 7, 1, 3 1, 7, 1, 7, 8, 1,y z y y x y y x x zr r a r r a r r r r r r⎡ ⎤= − − −⎣ ⎦ . 

If ( )1 6 7, 1, 3y ya r r aγ = − , ( )2 1, 7, 1, 7,x y y xr r r rγ = − , then ( )7, 8, 1 2 8, 1,y z x zr r r r= γ − γ . We square 7, 8,y zr r : 

    ( ) ( )
1

2 2 2 2 2
7, 8, 1 2 8, 2 8, 1,2y z x x zr r r r r= γ − γ γ + γ . (22) 

Substituting Eq. (22) in the first equation of system (21), we get 
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 1

2 2 2
2 21 2 8, 2 8,2 2 2

7 8, 3 7, 8, 7, 8 32
1,

2
2 x x

x x x y
z

r r
r r a r r r r a

r

γ − γ γ + γ
− + = − , 

 
1

2 22 2 2 2 2 2 2 2 2 2
1, 7 8, 3 7, 1, 8, 1 2 8, 2 8, 3 1, 1, 7, 82 2 0z x x z x x x z z yr r r a r r r r r a r r r r− + γ − γ γ + γ + − = . 

As a result, we get a quadratic equation for 8,xr  

 ( ) ( ) ( )1

2 22 2 2 2 2 2 2 2
1, 7 2 8, 1 2 3 7, 1, 8, 1, 3 7, 82 0z x x z x z yr r r a r r r r a r r+ γ − γ γ + + γ + − = , (23) 

and solving this equation, we get two roots for component 8,xr . 

From Eq. (7), we get  

 ( )8, 3 7, 8, 7,y x x yr a r r r= −  (24)  

and, from Eq. (13),  

 ( )
1 22 2 2

8, 8 8, 8,z x yr r r r= − − . (25)  

Thus, vector 8r  is as follows: { }8 8, 8, 8,, ,x y zr r r r= . 

EXAMPLE OF SOLUTION 

The initial data is as follows: 5 8.8r = ; 3 7 6.6r r= = ; 2 8 13.2r r= = ; 1 8.8r = . 

The areas of triangles on the plane are determined by these data: 

 0 0 0 0 0 0
53 57 87 32 87 32 26.4.S S S S S S= = = = = =  

Let us assume { }3 5; 4.31; 0r = − − , { }7 4.31; 5; 0r = − − . 

For Eqs. (1) and (2), 

 ( )
22 2 0 2 2 2

1 2 5 3 534 8.8 6.6 4 26.4 24.196a a r r S= = − = × − × = . 

Components of vector 5r  may be found using Eqs. (3) and (4) 

 1 7, 2 3,
5,

3, 7, 3, 7,

0.383128y y
x

x y y x

a r a r
r

r r r r

− +

= =

−

; 2 3, 1 7,
5,

3, 7, 3, 7,

5.169457x x
y

x y y x

a r a r
r

r r r r

− +

= =

−

; 

 
2 2 2

5, 5 5, 5, 7.111254z x yr r r r= − − = ; { }5 0.383; 5.169; 7.111r = . 

Considering vector 2r , let’s assume 2, 5zr = . 

For Eqs. (7) and (8), we find 

 ( )
22 2 0 2 2 2

3 4 7 8 784 6.6 13.2 4 26.4 60.297a a r r S= = − = × − × = , 

 ( )
22 2 0 2 2 2

5 6 2 1 214 8.8 13.2 4 26.4 103.470a a r r S= = − = × − × = . 

From the solution of Eq. (17) 

 
2 2 2 2

3 2, 4 3, 2, 4 7 3,2 0x x x yr r a r r a a r− + − = , 
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where 
2 2

7 2 2,za r r= − , we find 2, 3.878xr = −  and, substituting in Eq. (16), we get 

 ( )2, 4 3, 2, 3, 11.585y x x yr a r r r= − = − . 

Thus, vector 2r  is defined: 

 { } { }2 2, 2, 2,, , 3.878,   11.585,   5x y zr r r r= = − − . 

Proceeding to vector 1r , we assume 1, 0.5zr = . 

Solve quadratic equation (20) for 1,xr : 

 ( )2 2 2 2 2
2, 2, 1, 9 2, 1, 9 8 2,2 0y x x x x yr r r a r r a a r+ − + − = , 

where 
2 2

8 1 1, 77.19za r r= − =  (Eq. (18)), 9 5 1, 2, 100.97z za a r r= − = . The root is 1, 0.203xr = . 

From Eq. (19), we find  

 ( )1, 9 1, 2, 2, 8.78y x x yr a r r r= − = − . 

Vector { } { }1 1, 1, 1,, , 0.203, 8.78, 0.5x y zr r r r= = −  is determined. 

Let us define components for vector 8r . For Eq. (22), we define parameters  

 1 6 7, 1, 3 91.33y ya r r aγ = − = , 

 2 1, 7, 1, 7, 36.83x y y xr r r rγ = − = . 

We find expressions in the brackets in Eq.(23): 

⎯the first expression is  

 ( )22 2
1, 7 2 1367.08zr r + γ = ; 

⎯the second expression is  

 ( )2
1 2 3 7, 1,2 6876.21x za r r− γ γ + = − ; 

⎯the third expression is  

 ( )22 2 2 2
1 1, 3 7, 8 6052.18z yr a r rγ + − = . 

Then Eq. (23) in numeric expression looks as follows: 

 2
8, 8,1367.08 6876.21 6052.18 0x xr r− + = . 

Solving this equation, we obtain the root 8, 3.89xr =  and from Eq. (24) ( )8, 3 7, 8, 7, 10.51y x x yr a r r r= − = −  

and ( )
1 22 2 2

8, 8 8, 8, 6.98z x yr r r r= − − = . Thus, { }8 8, 8, 8,,x y zr r r r= = { }3.89, 10.51,  6.98− . 

Vectors 5r , 2r , 1r , and 8r   in the space xyzO  are defined.  

In general, this vector model provides a possibility to define the relief of the structure at any stage of 
transformation as well as the shape of the enveloping surface. Figure 3 shows the stages of transformation 
of the hexactinal structure with aforementioned parameters.  
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Fig. 3. Transformation of a hexactinal structure: (a)⎯the developed view; (b)⎯the stages of transformation; 
(c)⎯the finite compact structure. 

CONCLUSIONS 

A vector model for transformation of the hexactinal structure is presented. It provides a possibility to 
define the geometry of the relief of the structure at any stage of transformation as well as define 
the motion kinematics of all its elements. The example of calculation of the fixed position of the folded 
structure elementary unit and numerical simulation confirm efficiency of the developed algorithms. 
The technique suggested may become the basis for constructing the models of other hexactinal structures, 
including modified ones. 

Results of the research may be used to design the cores of sandwich shells, sound absorbing structures 
and development of the parts of equipment for manufacturing of such structures.  
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