
ISSN 1063-7729, Astronomy Reports, 2020, Vol. 64, No. 12, pp. 1078–1086. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Astronomicheskii Zhurnal, 2020, Vol. 97, No. 12, pp. 1042–1050.
Lunar-Based Measurements of the Moon’s Physical Libration: 
Methods and Accuracy Estimates

N. K. Petrovaa, b, *, Yu. A. Nefedyeva, A. O. Andreeva, b, and A. A. Zagidullina

a Kazan Federal University, Kazan, Russia
b Kazan State Power Engineering University, Kazan, Russia

*e-mail: Natalya.Petrova@kpfu.ru
Received December 19, 2019; revised July 7, 2020; accepted July 30, 2020

Abstract—Computer simulation results are reported for planned lunar-based observations to be conducted
using an automated zenith telescope that can be placed at any lunar latitude. Benefits of lunar-based obser-
vations are shown, in comparison with lunar laser ranging. It is investigated whether, and how effectively,
these observations can be used to determine the lunar rotation parameters (physical libration). The accuracy
requirements for these observations are analyzed in view of the accuracy requirements for determining the
lunar rotation parameters. The necessary number of telescopes, as well as their optimal locations, is assessed.
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1. INTRODUCTION
Lunar-based measurements of physical libration

imply that measuring instruments are placed onto the
lunar surface. Observations from the lunar surface are
free from atmospheric f luctuations and need not
accommodate the Earth’s orbital and rotational
motion.

The new-type observations offer yet another
advantage—they are independent of lunar laser rang-
ing (LLR) and can provide even higher accuracy. It is
important that we consider here these two matters of
principle. Firstly, lunar-based observations are inde-
pendent of LLR and, hence, make it possible to clarify
whether LLR data have systematic errors. Such errors
may arise because

(1) LLR is not sensitive to the direction perpendic-
ular to the Earth–Moon line; consequently, observa-
tions are less sensitive to librations around the Earth–
Moon line.

(2) It is difficult to perform LLR during new moon
and full moon; therefore, observations are synchro-
nized with the libration period.

(3) LLR amplitudes depend on uncertainties in the
positioning of lunar-based reflectors.

Secondly, lunar-based observations enable the sep-
aration of different parameters and different frequen-
cies. Coupled with an increase in the quality of LLR,
this separation can significantly improve the quality of
observations over the Moon’s rotation.

Space agencies and scientific organizations in
many countries are examining the various types of
such measurements.

Thus, in 2018, NASA announced the LSITP
(Lunar Surface Instrument and Technology Payloads)
project. This project plans to deliver landing modules
onto the lunar surface with equipment for completing
not only scientific but also commercial tasks. The
LSITP is scheduled for implementation in the early
2020s.

Following the success of the SELENE (Kaguya)
mission in 2008–2010, Japanese researchers consid-
ered the possibility of using a low-orbit satellite and
lunar-surface radio beacons to implement the inverse
VLBI method. However, computer simulation of this
experiment [1] showed its low efficiency for determin-
ing the lunar rotation parameters.

However, another project planned by the Japanese
space agency (JAXA)—the ILOM (in situ Lunar Ori-
entation Measurement)—indeed showed good pros-
pects in this area. Within the ILOM project, it was
proposed to put a zenith telescope on one of the lunar
poles [2]. It was planned to measure, within that proj-
ect, the selenographic coordinates of stars with a high
accuracy and use these data to determine the lunar
rotation parameters. There are many benefits to posi-
tioning an automated zenith telescope (AZT) on a
pole.

1. Here, good conditions exist for placing measure-
ment instruments due to the existence of both perma-
nently shadowed and permanently illuminated zones.

2. Here, stars move slowly, and the number of stars
is limited by the pole’s precession ring, beyond which
the Moon’s diurnal rotation does not take them. All
these factors contribute to efficient detection and
accurate identification of stars.
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3. The error in obtaining the lunar rotation param-
eters when processing a single measurement is effec-
tively neutralized by statistics on large stellar samples,
thus reducing the resulting error to almost zero [3].

In [3–6], the possibilities of the ILOM project
were investigated by computer simulation. It was
shown that, apart from suitable conditions for tech-
nology positioning of the instruments on the poles,
this project offers good chances for determining the
lunar rotation parameters in terms of latitude and tilt.
Nevertheless, the described experiment has one cru-
cial setback—as shown by calculations, polar observa-
tions cannot be used to determine the third parameter
of the Moon’s rotation, i.e., longitudinal libration,
which carries in itself a lot of useful information about
the lunar structure.

In this regard, it seems interesting to explore the
possibilities of an experiment in positioning one or
several AZTs at other lunar latitudes. This paper inves-
tigates the quality aspects of determinations of the
lunar rotation parameters in the case of nonpolar tele-
scope positioning and discusses the search for an opti-
mal telescope localization on the Moon.

2. CONSTRUCTING A MATHEMATICAL 
MODEL OF THE EXPERIMENT

The lunar exploration history knows no cases of
applying AZTs to determine the lunar rotation param-
eters; therefore, computer simulation techniques pres-
ent one of the most effective ways to study the funda-
mental possibility, as well as efficiency, of using AZTs
for these purposes. Simulation of planned observa-
tions serves to:

(1) Determine the necessary number of AZTs and
their optimal positioning.

(2) Develop a program of observations and deter-
mine their duration.

(3) Substantiate the accuracy requirements for the
observations in view of the accuracy requirements for
the lunar rotation parameters.

Solving the formulated problems depends, firstly,
on correct construction of the transition matrix
between the lunar and inertial coordinate systems and,
secondly, on correct determination of the telescope
coordinates in the lunar system.

The technical characteristics of the telescope in the
simulation are the same as in the ILOM experiment
[7]: the field of view is 1°; the accuracy of one mea-
surement in the field of view of the CCD matrix is no
worse than 10″; the telescope has an azimuthal
mounting, with the tube being directed to the zenith of
the observation site. The duration of the observations
depends on the quality of the equipment that main-
tains the operation of the measuring instruments. The
desirable duration varies from a year to a year and a
half, so as to be able to refine the long-period compo-
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nents of the lunar rotation parameters (LRPs) from
the observations.

The task of enabling the analysis of effects attribut-
able to features of the internal structure of the lunar
body necessitates an LRP determination accuracy of
no less than 1″.

We now define some of the fundamental positions
for the localization parameters of the lunar-based tele-
scope. The position of the telescope in a dynamic
coordinate system (DCS) formed by the Moon’s prin-
cipal axes of inertia is defined by the longitude  and
latitude  (Fig. 1).

The position of the DCS relative to, in our case, the
ecliptic coordinate system is defined by the Euler
angles , , and ,

(1)

which include the lunar physical libration (LPL)
angles: , , and , in longitude, inclination,
and node, respectively. It is the libration angles that
are the LRPs.  is the mean inclination of the lunar
pole  to the ecliptic pole . In (1), it is assumed

that . The parameter  is the latitudinal argu-

ment, i.e., the angular distance of the Moon’s mean
longitude from the ascending node of the lunar orbit

. The angles , , and  for a given time
interval are calculated using the analytical theory of
physical libration [8, 9].

The field of view of the telescope (FVT) ( ) in
degrees can be varied, if necessary, in the course of the
simulation.

Since the location of the telescope will change in
the course of the simulation, it makes no sense to solve
the sampling problem for observations of specific stars
from stellar catalogs with all the necessary reductions.
Therefore, instead of choosing stellar coordinates
from catalogs, we simulate the ecliptic coordinates of
any given number of stars using a random number
generator that simulates the ecliptic longitudes  and
latitudes  of “stars” in a band of width equal to the
FVТ, along the line of the precessional motion of the
telescope (Fig. 2).

The system of selenographic stellar coordinates ( ,
, ) in the FVT is defined as follows: the  axis aims

to the zenith of the telescope site  and serves as its
axis; the  axis goes along the meridian on which
T stands; and the  axis forms a right-hand coordinate
system (Fig. 1b).

The position of the telescope is specified relative to
the DCS by the longitude  and latitude . We con-
sider an ideal situation where the coordinates  and 
are known with absolute accuracy. This idealization is
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Fig. 1. (a) Position of the telescope Т relative to the ecliptic and dynamic coordinate systems. The lines are shown of the lunar
pole’s retrograde precession and the corresponding motion of T. (b) Mapping of the FVT and stellar selenographic coordinates
in the telescope coordinate system. 
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Fig. 2. Motion of the telescope in the ecliptic coordinate system, and the stars whose coordinates were generated in such a way
that they fall within the FVT during the designated observation period in 2018–2019. 
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quite far from reality because the coordinates of
objects in the DCS have large errors [10]; thus, such a
model can only be regarded as a first approximation.

Based on these assumptions, we can derive the sel-
enographic coordinates of a star in the telescope coor-
dinate system (TCS) from the equation system

= λ ⋅ ϕ + Θ ⋅ λ ⋅ ϕ
− Θ ⋅ ϕ − Θ ⋅ λ − Θ,

1 1

1 1 1

(cos cos cos sin sin )
sin sin sin sin cos
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b c d
(2)

which was obtained using the rotation matrices in
going from the ecliptic coordinate system to the DCS
[4] via the Euler angles (1) and then from the DCS to
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− Θ ⋅ ϕ,
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Fig. 3. (а) Tracks of four polar stars observed with a polar telescope ( , ) for 33 days. Star 7 appears in its field of
view only periodically. (b) In the field of view of a telescope with the coordinates , , the tracks change their shape;
some of the stars appear twice within the specified period. 
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the TCS via the angles  and . Here we introduce
the following notation:

(3)

, ,  are the ecliptic coordinates of the
star.

3. ANALYSIS OF STAR TRACKS DEPENDING 
ON THE LATITUDE OF THE TELESCOPE SITE

The resulting Eqs. (2) and (3) can serve to repro-
duce the construction of star tracks, which is the direct
problem of the simulation.

If the telescope stands close to the pole, polar stars,
as seen through it, experience a shift equal to the polar
distance of the telescope. In the TCS, the visibility of
polar stars in its FVT of 1° is shown in Fig. 3.

The tracks are no longer spirals; within one month,
a star can cover a part of its path, leave the FVT, and
then reappear. When moving to southern latitudes, the
pattern of the star tracks undergoes no significant
changes; the lines become straighter. Due to the
increase in the radial velocity of rotation of the tele-
scope, at low latitudes the instrument is able to detect
only 1 to 4 appearances of a star in 2 months, even if
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records are taken quite frequently, every 15 min (see
Fig. 4).

4. SOLVING THE INVERSE LPL PROBLEM 
FOR NONPOLAR TELESCOPES

At the stage of the inverse problem, the rectangular
coordinates of the star, which were calculated in the
direct problem, are considered as “observed” stellar
coordinates and are used to calculate the “unknown”
LRPs. In Eq. (2), these “unknowns”— , , and

—are part of the relations for the Euler angles (1)
and can be derived from these equations by the
approximation method [5, 6]. In the course of the
simulation, it was shown that the system of nonlinear
equations (2), despite the close-to-zero Jacobian,
allows for a convergent iterative solution by the gradi-
ent method [10].

The technology developed by the authors and the
corresponding software for realizing the gradient
method was applied to obtain a stable solution with
high accuracy both for polar and nonpolar telescope
locations. This result means that if we obtain at the
stage of the direct problem for a telescope positioned at
any point on the Moon the selenographic coordinates

,  using the LRPs  calculated from the
analytical theory [6], then, at the stage of the inverse
problem, we can introduce in Eq. (2) the coordinates

,  as observed coordinates and thus obtain the LRP
values  with an error of less than 0.1″:

 ms,  ms,  0.1 ms,
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1x 1y
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Fig. 4. The star tracks obtained by solving the direct problem, for stars in the field of view of the AZT, the selenographic coordi-
nates of which were calculated with a step of 15 min during the first three hours of two lunar days. The points indicate the time
of recording of a given star. The lines are the star tracks. (a) Star observations at the equator (latitude 0°). In this case, there are
only 10 stars at the equator, with a maximum of 6 recordings over 3 h. (b) At latitude 30°. In this case, 11 stars are recorded, and
there are 8 new appearances. (c) At latitude 60°. In this case, 14 stars are observed, each being recorded a maximum of 10 times.
Of these, one star was recorded only once. (d) At the pole (latitude 90°). In this case, due to the slow motion of the stars, all the
points recorded over the three hours of observations merged in fact into one big spot. Here, all the stars that fell within the FVT
do not leave its visibility field.
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and  ms. Consequently, the gradient
method as such does not introduce errors in the solu-
tion of Eq. (2) within the accuracy required for the
experiment for all the simulated positions of the tele-
scope.

The goal of the present simulation is to investigate
the dependence of the accuracy of the LRP determi-
nations on the latitude of the observation site in those
cases where the values , , obtained from observa-
tions, are introduced at the stage of solving the inverse
problem. The values ,  may also contain measure-
ment errors and, importantly, differences in the
parameters of the real Moon from the model assumed
in the LPL theory. In other words, to what extent will
the LRP values be sensitive to changes in the measured
selenographic coordinates? At least, when modeling
the polar observations, we showed [5, 6] that the lon-
gitudinal libration is absolutely not sensitive to obser-
vations and that measurement errors in the coordi-
nates multiply the error in the latitude and node by .
But what happens at other latitudes? We need to deter-
mine such a location of the AZT site where all the
three LRPs equally noticeably react to any changes in

σ − σ < .| | 0 1o cI

o
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o
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2

the measured coordinates. In the case of good mea-
surement accuracy, the discrepancies between the
observed coordinates  and  and those calculated
theoretically from the approximate model,  and ,
will reflect their sensitivity only to factors unac-
counted for in the model and thus provide information
both to refine the model parameters and to improve
the model itself.

To conduct the analysis, we performed calculations
of the direct and inverse problems for AZTs positioned
at different latitudes. In the case of an azimuthal
mounting of the telescope, a natural challenge arises,
as shown in Section 3. As the latitude of the observa-
tion site decreases, the velocity of motion of stars in
the FVT increases. This happens because the AZT
participates in two types of motion: slow precessional
motion and fast diurnal motion. This, in turn, creates
difficulties with the synchronization of observations at
different latitudes, which is needed to measure the
LRPs at one and the same time of observation.

Moreover, if we had decided to observe during a
lunar day all the stars that fall within the FVT at the
latitude of the observation site, we would have had to
generate an enormous amount of stars and store their

o
sx o

sy
c
sx c
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generated coordinates in computer memory. This
would have required huge resources of external mem-
ory and, no less importantly, would have led to consid-
erable expenditure of CPU time, which poses, at the
stage of search modeling, a substantial obstacle to the
analysis of results. If, for example, we took a step of
coordinate recording at 1 h, it turned out that at low
latitudes, we could at best record one appearance of a
star in 1 h of observation (Fig. 3). However, at north-
ern latitudes, the recording of stars can be carried out
once every 1–2 days since many stars do not leave the
FVT for as long as several months.

Therefore, in order to obtain a larger number of
measurements per one recording of stars and reduce
the CPU time per calculation, we found a simple yet
not fully universal way. This approach relies on the fact
that according to our simulations, most stars at lati-
tudes below 75° are visible through a telescope for no
more than three hours. During these three hours, we
calculated the coordinates every 15 min. When the
allotted time expired, we abruptly changed the current
time by the duration of the lunar day, i.e., by 27.3 days,
and again observed the same stars, which reappeared
in the field of the AZT after such a rapid artificial diur-
nal rotation of the Moon. As a result, we conducted a
triple series of observations of three hours each,
recording every 15 min the coordinates of the same
stars in each series (Fig. 4).

In fact, this regime is due to the described feature
of observation of stars in the case of an azimuthal
mounting of the telescope. To obtain the desired
result, we had to simulate a process that can hardly be
reproduced in reality—seven telescopes positioned at
different latitudes simultaneously record the coordi-
nates of a different number of stars for a long time. In
order to maintain simultaneity and capture stars at
southern latitudes, we need to take records at least
every 15 min and save each measurement in RAM or
in files. In one lunar day for one telescope only, pro-
vided that 20–40 stars appear in its field of view per
month, the number of these measurements will be
about 80000. However, in one month, one star (at
southern latitudes) will yield 2–3 measurements,
which, naturally, is not enough for statistics. There-
fore, we had to continue the “observation” process for
at least three lunar days. As a result, for one telescope,
the calculation took 80–100 min, depending on the
number of stars; most of the time was spent on work-
ing with files; and it is not possible to store huge data
streams in RAM.

It should be noted that we, naturally, had no ready-
made simulation algorithm. We were developing it in
the course of studying the not always readily compre-
hensible behavior of stars; therefore, it made little
sense to spend hours waiting for the result in order to
analyze the solution and correct the algorithm. When
we figured out why stars at different latitudes behave as
shown in Fig. 4, we were able to develop the described
ASTRONOMY REPORTS  Vol. 64  No. 12  2020
observation regime, i.e., three hours of measurements
at the beginning of each month, which allowed us to
solve the posed problem, i.e., to identify the sensitivity
of the LRPs to the measured selenographic coordi-
nates of stars at different latitudes. This regime, or
“schedule,” of observations cannot be realized in
practice—it is only the computer that can make leaps
of 27 days in an instant. However, it is this method of
recording stellar coordinates and solving the corre-
sponding inverse problem that allowed us to solve the
problem within a reasonable time.

By applying this observation technique, we were
able, firstly, to record a large number of measurements
of stars as they crossed the FVT and, secondly, to con-
siderably reduce the calculation time. For all latitudes,
we obtained the necessary values of both the coordi-
nates and LRPs at the same time points, which is an
important condition for an adequate analysis of the
results.

Thus, we performed calculations for seven possible
latitudes of the telescope site: from 0° to 90° with an
interval of 15°. We showed that the longitude of the
observation site affects only the time of appearance of
the star in the FVT but does not affect the quality of
the observations. Therefore, we confined ourselves to
considering the positioning of telescopes at the first
meridian, where their selenographic longitude is
always zero.

From the analysis of the tracks presented in Fig. 4,
we see that, at the southern latitudes, the number of
points of recording is smaller than at the middle and
northern latitudes. At latitude  (the north pole), we
see segments of the spirals of almost all the chosen
stars—during the observation time, they circle around
the center of the telescope, moving very slowly away
from it as the lunar pole precesses; over three hours of
observations, the measurement points differ very little
from one other, merging together to create a “blotchy”
feeling.

In order to test the sensitivity of the LRPs to
changes in the selenographic coordinates of the stars,
we randomly changed by  ms the values of  and

 that were obtained from the direct problem. Then,
we introduced the changed data into the solution of
the inverse problem and checked how the three LRPs
react to the changes in the “observed” coordinates. As
a result, we obtained for each star the LRPs at all the
times of coordinate recording.

A series of plots (Fig. 5) that demonstrate certain
errors (O–C), i.e., differences between the original
LRP value, from which  and  were calculated, and
the one obtained from the changed selenographic
coordinates, underpinned our analysis of the simula-
tion results. Figure 5 allows us to compare how the
errors (O–C) change, depending on the observation
latitude for all the three LRPs.
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Fig. 5. Plots of (O–C) in the LRP determinations from one observation at different latitudes of the AZT site—at different times,
the “observed stellar coordinates”  and  experienced random variations within ±10 ms. The abscissa axis shows the ordinal
number of each star measurement, which occurs 15 min after the previous one for all the three series of measurements.
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Having analyzed the residual differences at differ-
ent latitudes, we can draw the following conclusions.

1. The maximum sensitivity of  in the LRPs to
changes of  in the selenographic coordinates  and

 is obtained for  and  from observations at the
pole: , and for  at the equator . The lon-
gitudinal libration cannot at all be determined from
polar observations.

2. Conversely, equatorial observations provide not
only good determinations of the longitude libration 
but also give a possibility to determine the other two
parameters (the libration angles in the tilt  and node

) although they are less sensitive to changes in the
selenographic coordinates than in the northern lati-
tudes. If the aim of the observation is to study the lon-
gitude libration , then AZTs should preferably be
placed at a latitude of  (to avoid shielding by the
Earth, if  is placed close to the first meridian).

3. At a latitude of 30°–45°, all the three LRPs have
virtually the same error , which, in our opinion,
makes these latitudes optimal for positioning a tele-
scope capable of determining all the three LRPs,
which equally respond to variations in selenographic
coordinates.

4. Predictably, the errors (O–C), obtained by aver-
aging over all the stars at the same time of observation,
virtually shrink to zero at all the latitudes due to the
random nature of the changes introduced by us at any
point in time. This result necessitates such a schedule
of future observations that would ensure that as many
stars as possible fall within the FVT at the same time.
If the changes in the observed coordinates are not ran-
dom but functional, namely, associated, e.g., with
applying a f lawed model of the Moon’s rotation, the
average plot might also develop both systematic shifts
and periodic variations, which in turn may serve as an
observational groundwork for refining the model
parameters.

5. A relative “drawback” of nonpolar AZT observa-
tions, apart from the lack of suitable conditions for the
measuring equipment and partial shielding of the stars
by the Sun, is the relatively high velocity of stars in the
FVT, which may interfere with both the recording and
identification of stars. However, bearing in mind that
the Moon rotates at a velocity slower by a factor of 27
than the Earth, we can estimate that the velocity of
rotation of stars from observations obtained at the
lunar equator corresponds to that of stars at a latitude
of ~88° on the Earth. It is very likely that a technology
of terrestrial observations with such velocities already
exists, and if the schedule of forthcoming observations
is planned very carefully, there should not be any
issues with the recording and identification of the
observed objects.

5. CONCLUSIONS
The modern level of ongoing and planned studies

of the Moon shows a high accuracy of observations
and a variety of observational methods, among which
an important place belongs, due to the specific condi-
tions on the Moon, to the study of LPLs. This neces-
sitates the development of new methods for analyzing
large arrays of high-precision data on LRP observa-
tions and extracting from them the maximum amount
of useful information about the Moon. In this context,
the authors’ experience of conducting a computer
simulation of observations collected using a telescope
placed on the lunar surface shows that this kind of
experiment opens up new possibilities for revealing
subtle effects in the lunar rotation, which, in turn, will
allow scientists to delve into the intricate structure of
the Moon’s interior.

The computer simulation was carried out in two
stages. The first one was the direct simulation problem,
i.e., the calculation of the selenographic coordinates
of stars on the basis of the selected dynamic model of
the lunar body and the LRPs calculated from the ana-
lytical lunar rotation theory constructed for the model
of a solid Moon. The second stage was the inverse sim-
ulation problem, i.e., the selenographic coordinates
calculated at the first sage were then used to calculate
the LRPs and analyze the residual differences in com-
parison with the original data. The gradient method
applied for the inverse problem gives a high degree of
accuracy. The same stage included the introduction of
controlled errors in the “observed” coordinates, fol-
lowed by analysis of the sensitivity of the resulting
LRPs to these errors. The results of the inverse prob-
lem set the foundation for subsequent stages in the
research, which include the solving of the inverse LPL
problem, i.e., using the residual differences to refine
the characteristics of the Moon’s internal structure.

This paper describes a technique for computer sim-
ulation of observations collected with a lunar AZT,
which can be placed at any point on the lunar surface.
A substantiation is given for the criteria for determin-
ing the efficiency of the LRP observations. Visual
materials are presented, which served as a basis for
analyzing the research results.

The analysis of the simulated residual differences
led to the following conclusion. In order to determine
the libration angles in the tilt and node, it will be effi-
cient to place the AZT at the lunar pole. However,
determining the libration in longitude will require a
second telescope, which should preferably be placed
near the equator at a latitude of ±3°.

One telescope can be enough if placed at a latitude
of 30°–45°, where all the three LRPs will be available
for determination and equally sensitive to any varia-
tions in the measured selenographic coordinates.
However, the nonpolar positioning of the telescope
will require additional engineering research to ensure
the operability of the measuring equipment as well as
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careful elaboration of the stellar identification tech-
niques and meticulous scheduling of the observations.
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