МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Некоммерческое акционерное общество «Алматинский университет энергетики и связи имени Гумарбека Даукеева»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет»

ЭНЕРГЕТИКА, ИНФОКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ И ВЫСШЕЕ ОБРАЗОВАНИЕ

Международная научно-техническая конференция (Алматы, Казань, 20-21 октября 2022 г.)

Электронный сборник научных статей по материалам конференции

В трех томах

Том 2

Алматы, Казань

Рецензенты:

д-р техн. наук, профессор кафедры «Гидроэнергетика и возобновляемые источники энергии» Национального исследовательского университета «МЭИ» К.В. Суслов

д-р экон. наук, зав. сектором «Экономика энергетики» Института энергетики Национальной академии наук Беларуси Зорина Т.Г.

Редакционная коллегия:

Э.Ю. Абдуллазянов, С.С. Сагинтаева, И.Г. Ахметова, А.А. Саухимов, Ю.С. Валеева, Р.С. Зарипова, Ж.Б. Суйменбаева

М43 Международная научно-техническая конференция «Энергетика, инфокоммуникационные технологии и высшее образование»: электронный сборник научных статей по материалам конференции: [в 3 томах] / ред.кол. Э.Ю. Абдуллазянов, С.С. Сагинтаева, И.Г. Ахметова, А.А. Саухимов, Ю.С. Валеева, Р.С. Зарипова, Ж.Б. Суйменбаева. – Казань: КГЭУ, 2023. – Т. 2. – 637 с.

ISBN 978-5-89873-616-3 (T. 2) ISBN 978-5-89873-618-7

В электронном сборнике представлены научные статьи по материалам Международной научно-технической конференции «Энергетика, инфокоммуникационные технологии и высшее образование» по следующим научным направлениям:

- 1. Теплоэнергетика и теплотехнологии;
- 2. Электроэнергетика;
- 3. Радиотехника, электроника и телекоммуникации;
- 4. Энергообеспечение сельского хозяйства;
- 5. Промышленная и экологическая безопасность;
- 6. Математическое моделирование и системы управления;
- 7. Информационные технологии и кибербезопасность;
- 8. Космическая инженерия и робототехника;
- 9. Социально-политическое и культурное развитие Евразии;
- 10. Экономика знаний как фактор инновационного развития высшего образования.

Предназначены для научных работников, аспирантов и специалистов, работающих в области энергетики, а также для обучающихся образовательных учреждений энергетического профиля.

Статьи публикуются в авторской редакции. Ответственность за содержание статей возлагается на авторов.

УДК 620+004+378 ББК 31.1+32.81+74.48

ПРОБЛЕМАТИКА КЛАССИФИЦИРОВАНИЯ ОЗЕРНЫХ ЭКОСИСТЕМ

 $^1\Gamma$ алеева Асия Ильдаровна, 2 Мингазова Нафиса Мансуровна, $^3\Gamma$ ильманшин Искандер Рафаилевич

- ¹ ФГБОУ ВО «Казанский государственный энергетический университет», ² ФГАОУ ВО «Казанский (Приволжский) федеральный университет»,
- ³ ФГБОУ ВО «Казанский национальный исследовательский технический университет им. А.Н.Туполева-КАИ»

¹asiyagaleeva@yandex.ru, ²nmingas@mail.ru, ³is-er@yandex.ru

Аннотация. В настоящее время проблема «чистой воды» принимает глобальный характер. В первую очередь это относится к пресным водам и озерному фонду, где сосредоточено более 80% всех пресных вод. В настоящее время в целях решения проблем устойчивого использования озер - их классификация приобретает особо важное значение. Известны однопараметровые и многопараметровые способы классификации озер. Настоящая работа посвящена исследованию проблематики классифицирования озерных экосистем. В работе раскрывается потенциал Универсальной лимно-экологической классификации (УЛЭК), учитывающей все основные компоненты озерной системы, позволяющей описать тип озера в виде единой формулы, пригодной для использования для решения задач озерного природопользования разного уровня.

Ключевые слова: озерная экосистема, лимнологическая классификация, озерное природопользование, рациональное использование озерных ресурсов, экологическая безопасность.

PROBLEMS OF CLASSIFICATION LAKE ECOSYSTEMS

¹Galeeva Asiya Ildarovna, ²Mingazova Nafisa Mansurovna, ³Gilmanshin Iskander Rafailevich

¹ Kazan State Power Engineering University,

² Kazan Federal University,

³ Kazan National Research Technical University named after V.I. A.N. Tupolev-KAI ¹asiyagaleeva@yandex.ru, ²nmingas@mail.ru, ³is-er@yandex.ru

Annotation. Currently, the problem of "clean water" is taking on a global character. First of all, this applies to fresh waters and the lake fund, where more than 80% of all fresh waters are concentrated. At present, in order to solve the problems of sustainable use of lakes, their classification is of particular importance. Single-parameter and multi-parameter methods for

classifying lakes are known. This work is devoted to the study of the problems of classifying lake ecosystems. The paper reveals the potential of the Universal Limno-Ecological Classification (ULEC), which takes into account all the main components of the lake system, which allows describing the type of lake in the form of a single formula suitable for solving problems of lake nature management at different levels.

Key words: lake ecosystem, limnological classification, lake nature management, rational use of lake resources, environmental safety.

Введение

В настоящее время проблема «чистой воды» принимает глобальный характер [1]. В первую очередь это относится к пресным водам и озерному фонду[2], где сосредоточено более 80% всех пресных Методологическая база классификации озерных объектов является одним из наиболее сложных теоретических вопросов озерного природопользования. Классификационная деятельность – важное условие для реализации научных достижений и дальнейшего прикладного использования озерных ресурсов. В процессе классификационной деятельности в зависимости от прикладной задачи озерные объекты объединяется в некоторое число типологических групп разработки основа ДЛЯ мероприятий по рациональному использованию, охране и восстановлению озерного фонда [4].

Основная часть

Известны однопараметровые и многопараметровые способы классификации озер. Однопараметровые лимнологические классификации позволяют точно сегментировать множество водных объектов при решении узких задач [5]. Среди них можно выделить географические, генетические (по происхождению), морфометрические, термические, гидрологические, гидрохимические, гидробиологические и другие [6].

Многопараметровые способы типизации редки и их можно отнести к способным универсальным, решать комплексные задачи озерного природопользования разного уровня (оценка, мониторинг и инвентаризация И ИХ ресурсов, разработка методов прогнозирования водопотребления и водообеспеченности, путей устранения дефицита водных ресурсов в зависимости от социально-экономических и климатических условий, устойчивое использование озерных экосистем и т.д.). Многопараметровые лимнологические способы типизации решают задачу комплексного описания озерной экосистемы путем объединения широкого географических, круга целевых лимнологических, экологических экономических параметров.

Авторами предложена универсальная лимно-экологичсекая классификация (УЛЭК). Основным отличием УЛЭК является многопараметровость, высокая дискретность и объединение всех признаков

классифицирования озер в виде единой формулы, что позволяет применять машинные методы обработки данных для типизации и инвентаризации озерного фонда разного уровня.

Структура универсальной лимно-экологической классификации (УЛЭК) имеет следующий вид: 7 параметров, 15 признаков, 84 показателя, всего 8820 дифференцированных состояния [7]. Для возможности дальнейшей машинной обработки проработана методика кодирования показателей: для обозначения признака используется первая буква его названия в английском варианте, а показатели обозначаются цифрами [8]. Каждый признак включает в себя от 4 до 18 показателей. У каждого параметра имеется свое обоснование, являющееся приложением классификации с указанием литературного источника.

Структура УЛЭК в общем виде:

Географический параметр включает два признака: географическая зона (Geographical Zone) с показателями Z (Z_1 - тропические, Z_2 - субтропические, Z_3 - умеренные и Z_4 –арктические) и высота над уровнем моря (Height above Sea Level) с показателями SI (SI_1 -очень низкий (0-200м); SI_2 -низкий(200-500м); SI_3 -средний (500-1000м); SI_4 -высокий (1000-2000м); SI_5 -очень высокий (выше 2000м)).

Генетический параметр включает один признак - генезис (происхождение) озер (Genesis of lake holes) с показателями G: Тектонические - G_1 ; вулканические - G_2 ; гляциогенные (ледниковые) - G_3 ; пойменные (долинные, речные) - G_4 ; старичные - G_5 ; карстовые - G_6 ; термокарстовые - G_7 ; междюнные (дюнные) - G_8 ; суффозионные - G_9 ; реликтовые озера - G_{10} ; гравитационные - G_{11} ; эоловые - G_{12} ; флювиальные - G_{13} ; моренные - G_{14} ; гидрогенные - G_{15} ; лиманные - G_{16} ; метеоритовые - G_{17} ; искусственные - G_{18} .

Морфометрический параметр включает два признака: площадь (Area) с показателями A (A_1 — очень большая, свыше 1000 км²; A_2 — большая, от 101 до 1000 км²; A_3 — средняя, от 10 до 100 км²; A_4 — малая, от 1 га до 10 км²; A_5 — очень малая, озерки (до 1 га)) и глубина (Depth) с показателями D (D_1 — очень большая, свыше 100 м; D_2 —большая, свыше 50 м; D_3 — средняя, от 11 до 50 м; D_4 — малая, от 5 до 10 м; D_5 — очень малая, до 5 м).

Гидрологический параметр включает два признака: водный баланс (Water balance) с показателями W (W_1 – проточное; W_2 –приточное; W_3 –сточное; W_4 – бессточное); режим перемешивания воды (Mixing type of water) с показателями Mix (Mix_1 – димиктические; Mix_2 – меромиктические; Mix_3 – мономиктические; Mix_4 – амиктические и Mix_5 – постоянно перемешивающиеся).

Гидрофизический параметр включает два признака: температурный режим (Темрегаture) с показателями Т (T_1 – холодные: $t_{cp} < 10^{\circ}$ C; T_2 – умеренные: $t_{cp} = 10$ - 15° C; T_3 – тёплые: $t_{cp} = 15$ - 20° C; T_4 – очень тёплые: $t_{cp} = 20$ - 30° C; T_5 – горячие (термальные) озера с : $t_{cp} > 30^{\circ}$ C); прозрачность (TranSparence of water)

с показателями S (S_1 – очень высокая – более 12 м; S_2 – высокая, от 6-12м; S_3 – средняя, от 3-6 м; S_4 –низкая, от 1,5 – 3 м; S_5 – очень низкая, менее 1,5 м).

Гидрохимический параметр включает три признака: минерализация (Mineralization) с показателями М (M_1 – очень малая, до 100 мг/л; M_2 – малая, 100-200 мг/л; M_3 – средняя, 200-500 мг/л; M_4 – олигогалинные, 0,5-5 г/л; M_5 – мезогалинные, 5-18 г/л; M_6 – полигалинные – 18-30 г/л); ионный состав (Ion composition) с показателями І (I_1 –гидрокарбонатной, I_2 – сульфатной и I_3 – хлоридной, каждая из которых в свою очередь подразделяется на 1-Ca, 2-Mg и 3-Na-K – эти обозначения указываются в скобках) и водородный показатель (Ph) с показателями Ph (Ph₁ – нормальные (6,5-8,5); Ph₂ – кисловатые(6,4-5); Ph₃ – подщелоченные(8,6-9,5); Ph₄ – кислые (ниже 5); Ph₅ –щелочные (выше 9,5)).

Гидробиологический параметр включает три признака: трофический статус (Trophic status) с показателями Tr (Tr_1 -ультраолиготрофный; Tr_2 – олиготрофный; Tr_3 – мезотрофный; Tr_4 – эвтрофный; Tr_5 – гипертрофный; Tr_6 – дистрофный); флора (Flora) с показателями Fl (Fl_1 – слабозарастающие озера; Fl_2 –макрофитные озера, с богатым видовым составом; Fl_3 – макрофитные озера с низким видовым разнообразием; Fl_4 – планктонные озера) и фауна (Fauna) с показателями Fa (Fa_1 – рыбные с редкими видами; Fa_2 –рыбные с богатым видовым составом; Fa_3 – рыбные с фоновыми видами; Fa_4 – безрыбные озера).

Обсуждение

Возможность использования УЛЭК продемонстрирована на примере формулы известного озера г. Казань – озеро Нижний Кабан (г. Казань, Среднее Поволжье, РФ) [9, 10]:

 Z_3 Sl₂ G₅₋₆ A₄ D₃ W₄ T₃ Mix₁ S₅ M₄ I₂₍₁₎ Ph₃ Tr₅ Fl₃ Fa₃ (зонально умеренное, старично-карстовое, малое (56 га), среднеглубинное (до 16 м), бессточное, тепловодное, димиктическое, с очень низкой прозрачностью вод, олигогалинное, сульфатно-кальциевое, с подщелачиваемыми водами, гипертрофное (наличие сероводорода у дна), макрофитное с низким видовым разнообразием (20 видов макрофитов, 150 видов фитопланктона), рыбное (8 видов рыб, 71 вид зоопланктона), с фоновыми видами рыб.

Выводы

В настоящей работе раскрыта проблематика классифицирования озерных экосистем, показана структура авторской Универсальной лимно-экологической классификации (УЛЭК), которая учитывает все основные компоненты озер, описывает тип озера в виде единой формулы, помогает выявлять отдельные типы озер в зависимости от поставленных задач озерного природопользования и решения конкретных практических задач по использованию озерных ресурсов.

ИСТОЧНИКИ

- [1] Румянцев В.А., Драбкова В.Г., Измайлова А.В. Великие озера мира СПб: Лема, 2012. 370 с.
- [2] Wetzel R.G. Limnology: Lake and River Ecosystems. 3rd ed/Academic Press, 2001
- [3] Масков Л.Р., Корнилов В.Ю. Анализ структуры и энергетических параметров электротехнического комплекса газового промысла №1 ООО «Газпром добыча Ямбург» // Известия высших учебных заведений. Проблемы энергетики. 2021. Т. 23. № 6. С. 66-86.
- [4] Shiklomanov. I. A. World Water Resources at the Beginning of the Twenty-First Century. Cambridge Academ. 2004. 452 p.
- [5] Galeeva A., Mingazova N., Gilmanshin I. Sustainable urban development: urban green spaces and water bodies in the city of Kazan, Russia. Mediterranean Journal of Social Sciences. 2014. T. 5. № 24. C. 356-360.
- [6] Галеева А. И., Мингазова Н. М., Özdemir N., Гильманшин И. Р. Исследование междисциплинарного потенциала УЛЭК на примере озер России, Абхазии и Турции / А.И.Галеева, Н.М.Мингазова, N.Özdemir, И.Р.Гильманшин // Международный научно-исследовательский журнал. − 2022. − №8 (122).
- [7] Китаев С.П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: Карельский научный центр РАН, 2007. 395 с.
- [8] Галеева А.И., Мингазова Н.М. Подходы к созданию универсальной лимно-экологической классификации // Вода: химия и экология. Москва, 2011. №1. с.71-75.
- [9] Galeeva A.I., Mingazova N.M., Gilmanshin I.R. Universal limno-ecological classification as a tool for modeling water bodies of the ecological frame of green urban areas. 3rd International Environmental Chemistry Congress (EnviroChem), 01-04 November 2021, Antalya, Turkey. 2021
- [10] Мингазова Н.М., Деревенская О.Ю., Палагушкина О.В., Павлова Л.Р., Набеева Э.Г., Галеева А.И., Шигапов И.С., Зарипова Н.Р., Замалетдинов Р.И., Мингалиев Р.Р. Инвентаризация и экологическая паспортизация водных объектов как способ сохранения и оптимизации их состояния. Астраханский вестник экологического образования. 2014. № 2 (28). С. 37-43.
- [11] Галеева А.И. Использование универсальной лимно-экологической классификации для региональной типизации и инвентаризации озерного фонда на примере г. Казани / А.И. Галеева, Н.М. Мингазова // Известия Самарского научного центра Российской академии наук. 2010. Т. 12(33), № 1(4).С. 925-929.
- [12] Ефремов А. А. Анализ зарубежного опыта в части построения энергетической структуры ТЭС на твердых коммунальных отходах / А. А. Ефремов, А. Н. Дудолин // Вестник Казанского государственного энергетического университета. 2021. Т. 13. № 2(50). С. 3-14.