On C*-Algebra and *-Polynomial Relations

I. Berdnikov^{1*}, R. Gumerov^{1**}, E. Lipacheva^{1,2***}, and K. Shishkin^{1****}

(Submitted by G. G. Amosov)

¹Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, 420008 Russia

²Chair of Higher Mathematics, Kazan State Power Engineering University, Kazan, 420066 Russia Received April 2, 2023; revised April 20, 2023; accepted May 5, 2023

Abstract—The note deals with categories whose objects are functions from sets to C^* -algebras and morphisms are *-homomorphisms of C^* -algebras making appropriate diagrams commutative. In the theory of universal C^* -algebras, such categories satisfying certain additional axioms are called C^* -relations. Those C^* -relations that determine universal C^* -algebras are said to be compact. In this note, we construct functors between compact C^* -relations. These functors arise from *-homomorphisms between universal C^* -algebras which are determined by compact C^* -relations. In the case when a functor is defined by an isomorphism of the universal C^* -algebras, we show that this functor is an isomorphism of compact C^* -relations. Moreover, we consider C^* -relations which are called *-polynomial relations associated with *-polynomial pairs. It is shown that every C^* -algebra is the universal C^* -relation is isomorphic to a *-polynomial relation.

DOI: 10.1134/S1995080223060112

Keywords and phrases: compact C^* -relation, functor, representation, *-polynomial pair, *-polynomial relation, universal C^* -algebra.

1. INTRODUCTION

The motivation for this note comes from the theory of universal C^* -algebras generated by sets of generators subject to relations (see [1–5]). An axiomatic approach to relations that correspond to universal C^* -algebras has been developed in [5]. In the framework of this approach, one deals with categories called C^* -relations. For a C^* -relation, objects are functions from a fixed set to C^* -algebras and morphisms are *-homomorphisms of C^* -algebras making appropriate diagrams commutative. Moreover, every C^* -relation satisfies certain axioms. Those C^* -relations that determine universal C^* -algebras are said to be compact (see [5], Section 2).

In this note we introduce functors acting between compact C^* -relations. Such a functor \mathfrak{F}_{α} : $\mathcal{R}_2 \longrightarrow \mathcal{R}_1$ is constructed from a given *-homomorphism $\alpha : C^*(\mathcal{R}_1) \longrightarrow C^*(\mathcal{R}_2)$ between universal C^* -algebras $C^*(\mathcal{R}_1)$ and $C^*(\mathcal{R}_2)$ which are determined by compact C^* -relations \mathcal{R}_1 and \mathcal{R}_2 respectively. It is shown that if α is an isomorphism of C^* -algebras, then the functor \mathfrak{F}_{α} is an isomorphism of C^* -relations. Further, we consider C^* -relations which are called *-polynomial relations associated with *-polynomial pairs. A polynomial pair (X, P) consists of a non-empty set X and a non-empty subset P of the free *-algebra F(X) generated by X over the field of complex numbers. The objects of the *-polynomial relation $\mathcal{R}(X, P)$ associated with (X, P) are all functions f from the set X to C^* -algebras satisfying the following property: the set P is contained in the kernel of the unique *-homomorphism which is an extension of f to the free *-algebra F(X). For two objects $f : X \longrightarrow A$ and $g : X \longrightarrow B$ in

^{*}E-mail: mciya3857@gmail.com

^{**}E-mail: Renat.Gumerov@kpfu.ru

^{***}E-mail: elipacheva@gmail.com

^{*****}E-mail: keril9110gmail.com

 $\mathcal{R}(X, P)$, the morphisms from f to g are all *-homomorphisms of C^* -algebras of the form $\varphi : A \longrightarrow B$ such that $\varphi \circ f = g$. We prove that every C^* -algebra is a universal C^* -algebra determined by a *-polynomial relation. As an application of the above-mentioned results, we prove that every compact C^* -relation is isomorphic to a *-polynomial relation.

The note is organized as follows. It consists of Introduction and three more sections. Section 2 contains necessary notation and definitions from the theory of C^* -relations. In Section 3 we construct functors between compact C^* -relations. In Section 4 we consider *-polynomial relations associated with *-polynomial pairs and universal C^* -algebras generated by *-polynomial pairs.

2. PRELIMINARIES

Throughout this note we consider associative involutive algebras over the field of complex numbers. As usual, the symbol * stands for involutions on algebras. The trivial algebra consisting of one zero element is denoted by 0.

Let X be a non-empty set. We denote by F(X) the free *-algebra of all *-polynomials in noncommuting variables generated by X. For a family $\{A_{\lambda} \mid \lambda \in \Lambda\}$ of C*-algebras, we consider the direct product

$$\prod_{\lambda \in \Lambda} A_{\lambda} := \left\{ (a_{\lambda}) \left| \left| \left| (a_{\lambda}) \right| \right| = \sup_{\lambda} \left| \left| a_{\lambda} \right| \right| < +\infty \right\}$$

which is a C^* -algebra with respect to the coordinatewise algebraic operations and the supremum norm.

Further, we recall necessary definitions from [5]. For the basic facts from the theory of categories and functors we refer the reader to the book [6].

For a given set X, the null C^* -relation on X is the category \mathcal{F}_X whose objects are all functions of the form $j: X \longrightarrow A$, where A is a C^* -algebra. For two objects $j: X \longrightarrow A$ and $k: X \longrightarrow B$ in \mathcal{F}_X , a morphism from j to k is any *-homomorphism of C^* -algebras $\varphi: A \longrightarrow B$ making the diagram

commutative, i.e., $k = \varphi \circ j$.

A C^{*}-relation on X is a full subcategory \mathcal{R} of \mathcal{F}_X satisfying the following axioms:

- **C1:** the function $X \longrightarrow 0$ is an object of \mathcal{R} ;
- **C2:** if $\varphi : A \longrightarrow B$ is an injective *-homomorphism of C^* -algebras, $f : X \longrightarrow A$ is a function and $\varphi \circ f$ is an object of \mathcal{R} , then f is an object of \mathcal{R} ;
- **C3:** if $\varphi : A \longrightarrow B$ is a *-homomorphism of C^* -algebras and $f : X \longrightarrow A$ is an object of \mathcal{R} , then $\varphi \circ f$ is an object of \mathcal{R} ;
- **C4f:** if $f_i: X \longrightarrow A_i$ is an object of \mathcal{R} for every $i = 1, ..., n, n \in \mathbb{N}$, then the function

$$\prod_{i=1}^{n} f_i : X \longrightarrow \prod_{i=1}^{n} A_i$$

is an object of \mathcal{R} .

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

Objects of C^* -relations are also called *representations*.

A C^* -relation \mathcal{R} on a set X is said to be *compact* if, in addition, the following condition is fulfilled: **C4:** for any non-empty set Λ , if $f_{\lambda} : X \longrightarrow A_{\lambda}$ is an object of \mathcal{R} for every $\lambda \in \Lambda$, then the function

$$\prod_{\lambda \in \Lambda} f_{\lambda} : X \longrightarrow \prod_{\lambda \in \Lambda} A_{\lambda}$$

is also an object of \mathcal{R} .

The following statement is a reformulation of Theorem 2.10 from [5] (see also [2], Proposition 1.3.6; [3], Sect. 3.1; and [4], Sect. 1.4).

Proposition 1. Let \mathcal{R} be a C^* -relation on a set X. Then, \mathcal{R} is compact if and only if there exists an initial object in \mathcal{R} .

In what follows, for a compact C^* -relation \mathcal{R} on a set X, we consider an initial object $i : X \longrightarrow A$ of \mathcal{R} . The C^* -algebra A is denoted by $C^*(\mathcal{R})$. Thus, for every representation $j : X \longrightarrow B$ of \mathcal{R} there exists a unique *-homomorphism of C^* -algebras $k : C^*(\mathcal{R}) \longrightarrow B$ such that the diagram

is commutative, i.e., $j = k \circ i$. In this case, we denote the *-homomorphism k by \overline{j} . Obviously, we have

$$\overline{j} = \overline{\overline{j} \circ i}.$$
(2)

3. FUNCTORS BETWEEN COMPACT C*-RELATIONS

Throughout this section, \mathcal{R}_1 and \mathcal{R}_2 are compact C^* -relations on sets X_1 and X_2 respectively. Let $i_t : X_t \longrightarrow C^*(\mathcal{R}_t)$ be an initial object in the category \mathcal{R}_t , where t = 1, 2.

Assume that we are given a *-homomorphism of C^* -algebras $\alpha : C^*(\mathcal{R}_1) \longrightarrow C^*(\mathcal{R}_2)$. Now, we are going to construct a covariant functor $\mathfrak{F}_{\alpha} : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$ associated with the *-homomorphism α .

Firstly, we take an object $j : X_2 \longrightarrow B$ of the category \mathcal{R}_2 . To define the image of j under the action of the functor $\mathfrak{F}_{\alpha} : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$, we take the *-homomorphism of C^* -algebras $\overline{j} : C^*(\mathcal{R}_2) \longrightarrow B$ making the diagram

 $\begin{array}{c|c} X_2 \\ i_2 \\ & & \\ \hline \\ C^*(\mathfrak{R}_2) & - \stackrel{\overline{j}}{-} & - \succ B \end{array}$ (3)

commutative and consider the function $\overline{j} \circ \alpha \circ i_1 : X_1 \longrightarrow B$. By the axiom C3, the composition $\overline{j} \circ \alpha \circ i_1$ is an object of the category \mathcal{R}_1 . We define $\mathfrak{F}_{\alpha}(j)$ by

$$\mathfrak{F}_{\alpha}(j) := \overline{j} \circ \alpha \circ i_1. \tag{4}$$

Secondly, to define the arrow function for \mathfrak{F}_{α} , we take a morphism $\varphi: B \longrightarrow C$ in \mathcal{R}_2 making the diagram

commutative. Then, we can consider the objects $\mathfrak{F}_{\alpha}(j): X_1 \longrightarrow B$ and $\mathfrak{F}_{\alpha}(k): X_1 \longrightarrow C$ in the category \mathcal{R}_1 and the diagram

We claim that it is commutative. Indeed, using the commutativity of the diagrams (3) and (5), we get $\varphi \circ \overline{j} \circ i_2 = \varphi \circ j = k$, which means that the diagram

is commutative. Hence, by definition of the *-homomorphism $\overline{k} : C^*(\mathcal{R}_2) \longrightarrow C$, we obtain the equality

$$\varphi \circ \overline{j} = k. \tag{7}$$

Further, by (7), we have

$$\varphi \circ \mathfrak{F}_{lpha}(j) = \varphi \circ \overline{j} \circ lpha \circ i_1 = \overline{k} \circ lpha \circ i_1 = \mathfrak{F}_{lpha}(k),$$

which means the commutativity of the diagram (6), as claimed. Therefore, the *-homomorphism φ can be viewed as a morphism from $\mathfrak{F}_{\alpha}(j)$ to $\mathfrak{F}_{\alpha}(k)$ in the category \mathcal{R}_1 , and we can put

$$\mathfrak{F}_{\alpha}(\varphi) := \varphi. \tag{8}$$

It is straightforward to check that \mathfrak{F}_{α} preserves the identity morphisms and the compositions of morphisms. That is, we have

$$\mathfrak{F}_{\alpha}(1_j) = 1_{\mathfrak{F}_{\alpha}(j)}$$
 and $\mathfrak{F}_{\alpha}(\psi \circ \varphi) = \mathfrak{F}_{\alpha}(\psi) \circ \mathfrak{F}_{\alpha}(\varphi)$

whenever j is an object of the category \mathcal{R}_2 , $1_j : j \longrightarrow j$ is the identity arrow in \mathcal{R}_2 , φ and ψ are morphisms in \mathcal{R}_2 such that the composite $\psi \circ \varphi$ is defined in \mathcal{R}_2 . Thus, the formulas (4) and (8) define the object and the arrow functions respectively, and we have constructed the functor $\mathfrak{F}_\alpha : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$, as desired.

Furthermore, if $\alpha : C^*(\mathcal{R}_1) \longrightarrow C^*(\mathcal{R}_2)$ is an isomorphism of C^* -algebras, then we have the functors $\mathfrak{F}_{\alpha} : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$ and $\mathfrak{F}_{\alpha^{-1}} : \mathcal{R}_1 \longrightarrow \mathcal{R}_2$, where $\alpha^{-1} : C^*(\mathcal{R}_2) \longrightarrow C^*(\mathcal{R}_1)$ is the inverse of the *-homomorphism α .

We claim that both composites $\mathfrak{F}_{\alpha^{-1}} \circ \mathfrak{F}_{\alpha}$ and $\mathfrak{F}_{\alpha} \circ \mathfrak{F}_{\alpha^{-1}}$ are the identity functors on the categories \mathcal{R}_2 and \mathcal{R}_1 , respectively. Indeed, it suffices to prove that

$$\mathfrak{F}_{\alpha^{-1}} \circ \mathfrak{F}_{\alpha} = 1_{\mathcal{R}_2},\tag{9}$$

where $1_{\mathcal{R}_2}$ is the identity functor on \mathcal{R}_2 . To show this, we take an object *j* in the category \mathcal{R}_2 . Using the equality (2) and the commutative diagram (3), we get

$$\mathfrak{F}_{\alpha^{-1}} \circ \mathfrak{F}_{\alpha}(j) = \mathfrak{F}_{\alpha^{-1}}(\overline{j} \circ \alpha \circ i_1) = \overline{\overline{j} \circ \alpha \circ i_1} \circ \alpha^{-1} \circ i_2 = \overline{j} \circ \alpha \circ \alpha^{-1} \circ i_2 = \overline{j} \circ i_2 = j.$$

Of course, we also have $\mathfrak{F}_{\alpha^{-1}} \circ \mathfrak{F}_{\alpha}(\varphi) = \varphi$ whenever φ is a morphism in the category \mathcal{R}_2 . Hence, the equality (9) holds, as claimed. Thus, the functors $\mathfrak{F}_{\alpha} : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$ and $\mathfrak{F}_{\alpha^{-1}} : \mathcal{R}_1 \longrightarrow \mathcal{R}_2$ are isomorphisms of the categories. Summarizing the above observations, we have

Theorem 1. Let $X_1 \longrightarrow C^*(\mathcal{R}_1)$ and $X_2 \longrightarrow C^*(\mathcal{R}_2)$ be initial objects in compact C^* -relations \mathcal{R}_1 and \mathcal{R}_2 , respectively. Then, every *-homomorphism of C^* -algebras $\alpha : C^*(\mathcal{R}_1) \longrightarrow C^*(\mathcal{R}_2)$ generates the covariant functor $\mathfrak{F}_{\alpha} : \mathcal{R}_2 \longrightarrow \mathcal{R}_1$. Moreover, if α is an isomorphism of C^* -algebras, then \mathfrak{F}_{α} is an isomorphism of the categories \mathcal{R}_2 and \mathcal{R}_1 .

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

BERDNIKOV et al.

4. *-POLYNOMIAL RELATIONS

This section deals with *-polynomial relations associated with *-polynomial pairs. We begin with necessary definitions.

Definition 1. If X is a non-empty set and P is a non-empty subset of the free *-algebra F(X), then the pair (X, P) is said to be *-*polynomial*.

To introduce an additional notation, we recall the universal property of the free *-algebra F(X). Namely, for every mapping $f: X \longrightarrow A$ from a set X to a *-algebra A there exists a unique *-homomorphism $\tilde{f}: F(X) \longrightarrow A$ which is an extension of f to F(X). That is, for the embedding $i_X: X \longrightarrow F(X)$, the diagram

is commutative.

Definition 2. A function $f: X \longrightarrow A$ from a set X to a C^* -algebra A is called a *representation* of a *-polynomial pair (X, P) provided that $P \subset Ker\tilde{f}$, where $Ker\tilde{f}$ is the kernel of the *-homomorphism $\tilde{f}: F(X) \longrightarrow A$.

Let (X, P) be a *-polynomial pair. We consider the category $\mathcal{R}(X, P)$ whose objects are all representations of the *-polynomial pair (X, P). For representations $j : X \longrightarrow A$ and $k : X \longrightarrow B$ of (X, P), a morphism from j to k is any *-homomorphism of C^* -algebras $\varphi : A \longrightarrow B$ such that the diagram (1) is commutative. Thus, $\mathcal{R}(X, P)$ is a full subcategory of the null C^* -relation \mathcal{F}_X on X.

Definition 3. The category $\mathcal{R}(X, P)$ is called a *-polynomial relation associated with a *-polynomial pair (X, P).

In what follows, we treat certain properties of *-polynomial relations.

Proposition 2. For any *-polynomial pair (X, P), the *-polynomial relation $\mathcal{R}(X, P)$ is a C^* -relation.

Proof. The axiom **C1** is obviously satisfied in the category $\mathcal{R}(X, P)$. Further, let $\varphi : A \longrightarrow B$ be a *-homomorphism of C^* -algebras and $f : X \longrightarrow A$ be a function. Consider the diagram

Using the universal property of the free *-algebra F(X), we get the equality $\widetilde{\varphi \circ f} = \varphi \circ \tilde{f}$. So we have

$$\ker f \subset \ker(\varphi \circ f) = \ker(\varphi \circ f).$$

This implies the axiom C3.

If φ is an injective *-homomorphism, then one has the equality ker $\tilde{f} = \ker \varphi \circ f$. Hence, the axiom **C2** holds.

Finally, let $f_i : X \longrightarrow A_i$ be a function for every i = 1, ..., n, where $n \in \mathbb{N}$. For each $k \in \{1, ..., n\}$, we consider the diagram

where pr_k denotes the natural projection. Since $pr_k \circ \prod_{i=1}^n f_i \circ i_X = pr_k \circ \prod_{i=1}^n f_i = f_k$, one has the equality $pr_k \circ \prod_{i=1}^n f_i = \widetilde{f_k}$. Therefore, we get $\prod_{i=1}^n \widetilde{f_i} = \prod_{i=1}^n f_i$ as well as the equalities

$$\bigcap_{i=1}^{n} \ker \widetilde{f}_{i} = \ker \left(\prod_{i=1}^{n} \widetilde{f}_{i}\right) = \ker \left(\prod_{i=1}^{n} \widetilde{f}_{i}\right).$$

This implies the axiom **C4f**. Thus, the category $\mathcal{R}(X, P)$ is a C^* -relation.

The following is an example of a *-polynomial relation associated with a *-polynomial pair which is not a compact C^* -relation.

Example. Let $X = \{x\}$ be a one-element set and $P = \{xx^* - x^*x\}$ be the subset of the free *-algebra F(X) consisting of the single polynomial. Consider the *-polynomial relation $\mathcal{R}(X, P)$ associated with the *-polynomial pair (X, P). Let A be a C^* -algebra and $a \in A$ be a non-zero normal element. For each $n \in \mathbb{N}$ we take the object f_n of the category $\mathcal{R}(X, P)$ defined by

$$f_n: X \longrightarrow A: x \longmapsto na.$$

Since $\sup_{n \in \mathbb{N}} ||f_n(x)|| = +\infty$, the axiom **C4** is false in the *-polynomial relation $\mathcal{R}(X, P)$. That is, the category $\mathcal{R}(X, P)$ is not a compact C^* -relation, as desired.

Definition 4. If a *-polynomial relation $\mathcal{R}(X, P)$ has an initial object $i : X \longrightarrow A$, then the C^* -algebra A is called the *universal* C^* -algebra generated by the *-polynomial pair (X, P) and is denoted by $C^*(X, P)$.

The following theorem states that every C^* -algebra is a *universal* C^* -algebra generated by a *-polynomial pair.

Theorem 2. For every C^* -algebra A there exists a *-polynomial pair (X, P) such that $A = C^*(X, P)$.

Proof. Let us take the identity mapping $1_A : A \longrightarrow A$ and its extension $\tilde{1}_A : F(A) \longrightarrow A$. We have $\tilde{1}_A \circ i_A = 1_A$. (10)

We prove that A is the universal C^* -algebra generated by the *-polynomial pair $(A, Ker \tilde{1}_A)$.

More precisely, we claim that $1_A : A \longrightarrow A$ is an initial object in the *-polynomial relation $\mathcal{R}(A, Ker\tilde{1}_A)$. Indeed, let us take a representation $f : A \longrightarrow B$ of the *-polynomial pair $(A, Ker\tilde{1}_A)$. We need to show that there is a unique *-homomorphism from the C^* -algebra A to the C^* -algebra B such that the diagram

(11)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

is commutative. Informally, we have to show that f is a *-homomorphism of C^* -algebras or, more generally, that every object in the category $\mathcal{R}(A, Ker\tilde{1}_A)$ is a *-homomorphism of C^* -algebras.

Since f is a representation of the *-polynomial pair $(A, Ker\tilde{1}_A)$, we have $Ker\tilde{1}_A \subset Ker\tilde{f}$. This inclusion guarantees that there exists a unique *-homomorphism $\varphi : A \longrightarrow B$ of C^* -algebras making the diagram

commutative, i.e., we have

$$\tilde{f} = \varphi \circ \tilde{1}_A. \tag{12}$$

Further, we consider the diagram

Using the universal property of the *-algebra F(A) together with the equalities (12) and (10), we get

$$f = f \circ i_A = \varphi \circ 1_A \circ i_A = \varphi \circ 1_A.$$

This means that we have the unique *-homomorphism, namely, $\varphi = f$, making the diagram (11) commutative. Thus, $1_A : A \longrightarrow A$ is an initial object in the *-polynomial relation $\mathcal{R}(A, Ker\tilde{1}_A)$, as claimed. This completes the proof.

Corollary 1. For every C^* -algebra A the *-polynomial relation $\mathcal{R}(A, Ker\tilde{1}_A)$ is a compact C^* -relation.

Proof. Combining Propositions 1, 2 and the fact that the identity function $1_A : A \longrightarrow A$ is an initial object in the category $\mathcal{R}(A, Ker\tilde{1}_A)$, we get the statement. \Box

Finally, we use the previous results to prove

Theorem 3. Every compact C^* -relation is isomorphic to a *-polynomial relation.

Proof. Let \mathcal{R} be a compact C^* -relation on a set X and $i: X \longrightarrow C^*(\mathcal{R})$ be its initial object.

By Theorem 2, we have $C^*(\mathcal{R}) = C^*(C^*(\mathcal{R}), Ker\tilde{1}_{C^*(\mathcal{R})})$, i.e., $C^*(\mathcal{R})$ is the universal C^* -algebra generated by the *-polynomial pair $(C^*(\mathcal{R}), Ker\tilde{1}_{C^*(\mathcal{R})})$, and the identity mapping $1_{C^*(\mathcal{R})} : C^*(\mathcal{R}) \longrightarrow C^*(\mathcal{R})$ is an initial object in the *-polynomial relation $\mathcal{R}(C^*(\mathcal{R}), Ker\tilde{1}_{C^*(\mathcal{R})})$ associated with $(C^*(\mathcal{R}), Ker\tilde{1}_{C^*(\mathcal{R})})$. Corollary 1 guarantees that the *-polynomial relation $\mathcal{R}(C^*(\mathcal{R}), Ker\tilde{1}_{C^*(\mathcal{R})})$ is a compact C^* -relation.

Since the identity *-homomorphism $1_{C^*(\mathcal{R})} : C^*(\mathcal{R}) \longrightarrow C^*(\mathcal{R})$ is an isomorphism of C^* -algebras, Theorem 1 yields the functor

$$\mathfrak{F}_{1_{C^*(\mathcal{R})}}: \mathcal{R}(C^*(\mathcal{R}), Ker1_{C^*(\mathcal{R})}) \longrightarrow \mathcal{R},$$

which is an isomorphism of compact C^* -relations. The proof is complete.

FUNDING

The work has been supported by the Development Program of Volga Region Mathematical Center (agreement no. 075-02-2023-944).

REFERENCES

- 1. B. Blackadar, "Shape theory for C^* -algebras," Math. Scand. 56, 249–275 (1985).
- 2. N. C. Phillips, "Inverse limits of *C**-algebras and applications," in *Operator Algebras and Applications 1*, Vol. 135 of *London Math. Soc. Lecture Note* (Cambridge Univ. Press, Cambridge 1988), pp. 127–185.
- 3. T. A. Loring, Lifting Solutions to Perturbing Problems in C*-Algebras, Vol. 8 of Fields Institute Monographs (Am. Math. Soc., Providence, RI, 1997).
- 4. D. Hadwin, L. Kaonga, and B. Mathes, "Noncommutative continuous functions," J. Korean Math. Soc. 40, 789–830 (2003).
- 5. T. A. Loring, "C*-algebra relations," Math. Scand. 107, 43–72 (2010).
- 6. S. Mac Lane, Categories for the Working Mathematician, 2nd ed. (Springer Science, New York, 1998).