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Abstract—The note deals with categories whose objects are functions from sets to C∗-algebras and
morphisms are ∗-homomorphisms of C∗-algebras making appropriate diagrams commutative. In
the theory of universal C∗-algebras, such categories satisfying certain additional axioms are called
C∗-relations. Those C∗-relations that determine universal C∗-algebras are said to be compact.
In this note, we construct functors between compact C∗-relations. These functors arise from
∗-homomorphisms between universal C∗-algebras which are determined by compact C∗-relations.
In the case when a functor is defined by an isomorphism of the universal C∗-algebras, we show
that this functor is an isomorphism of compact C∗-relations. Moreover, we consider C∗-relations
which are called ∗-polynomial relations associated with ∗-polynomial pairs. It is shown that every
C∗-algebra is the universal C∗-algebra generated by a ∗-polynomial pair. As a consequence, we
obtain that every compact C∗-relation is isomorphic to a ∗-polynomial relation.
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1. INTRODUCTION

The motivation for this note comes from the theory of universal C∗-algebras generated by sets of
generators subject to relations (see [1–5]). An axiomatic approach to relations that correspond to
universal C∗-algebras has been developed in [5]. In the framework of this approach, one deals with
categories called C∗-relations. For a C∗-relation, objects are functions from a fixed set to C∗-algebras
and morphisms are ∗-homomorphisms of C∗-algebras making appropriate diagrams commutative.
Moreover, every C∗-relation satisfies certain axioms. Those C∗-relations that determine universal
C∗-algebras are said to be compact (see [5], Section 2).

In this note we introduce functors acting between compact C∗-relations. Such a functor Fα :
R2 −→ R1 is constructed from a given ∗-homomorphism α : C∗(R1) −→ C∗(R2) between universal
C∗-algebras C∗(R1) and C∗(R2) which are determined by compact C∗-relations R1 and R2 respec-
tively. It is shown that if α is an isomorphism of C∗-algebras, then the functor Fα is an isomorphism of
C∗-relations. Further, we consider C∗-relations which are called ∗-polynomial relations associated with
∗-polynomial pairs. A polynomial pair (X,P ) consists of a non-empty set X and a non-empty subset
P of the free ∗-algebra F (X) generated by X over the field of complex numbers. The objects of the
∗-polynomial relation R(X,P ) associated with (X,P ) are all functions f from the set X to C∗-algebras
satisfying the following property: the set P is contained in the kernel of the unique ∗-homomorphism
which is an extension of f to the free ∗-algebra F (X). For two objects f : X −→ A and g : X −→ B in
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R(X,P ), the morphisms from f to g are all ∗-homomorphisms of C∗-algebras of the form ϕ : A −→ B
such that ϕ ◦ f = g. We prove that every C∗-algebra is a universal C∗-algebra determined by a
∗-polynomial relation. As an application of the above-mentioned results, we prove that every compact
C∗-relation is isomorphic to a ∗-polynomial relation.

The note is organized as follows. It consists of Introduction and three more sections. Section 2
contains necessary notation and definitions from the theory of C∗-relations. In Section 3 we construct
functors between compact C∗-relations. In Section 4 we consider ∗-polynomial relations associated
with ∗-polynomial pairs and universal C∗-algebras generated by ∗-polynomial pairs.

2. PRELIMINARIES

Throughout this note we consider associative involutive algebras over the field of complex numbers.
As usual, the symbol ∗ stands for involutions on algebras. The trivial algebra consisting of one zero
element is denoted by 0.

Let X be a non-empty set. We denote by F (X) the free ∗-algebra of all ∗-polynomials in non-
commuting variables generated by X. For a family {Aλ | λ ∈ Λ} of C∗-algebras, we consider the direct
product

∏

λ∈Λ
Aλ :=

{
(aλ)

∣∣ ||(aλ)|| = sup
λ

||aλ|| < +∞
}

which is a C∗-algebra with respect to the coordinatewise algebraic operations and the supremum norm.

Further, we recall necessary definitions from [5]. For the basic facts from the theory of categories and
functors we refer the reader to the book [6].

For a given set X, the null C∗-relation on X is the category FX whose objects are all functions of
the form j : X −→ A, where A is a C∗-algebra. For two objects j : X −→ A and k : X −→ B in FX , a
morphism from j to k is any ∗-homomorphism of C∗-algebras ϕ : A −→ B making the diagram

X

j k

A
�

B

(1)

commutative, i.e., k = ϕ ◦ j.
A C∗-relation on X is a full subcategory R of FX satisfying the following axioms:

C1: the function X −→ 0 is an object of R;

C2: if ϕ : A −→ B is an injective ∗-homomorphism of C∗-algebras, f : X −→ A is a function and ϕ ◦ f
is an object of R, then f is an object of R;

C3: if ϕ : A −→ B is a ∗-homomorphism of C∗-algebras and f : X −→ A is an object of R, then ϕ ◦ f
is an object of R;

C4f: if fi : X −→ Ai is an object of R for every i = 1, . . . , n, n ∈ N, then the function
n∏

i=1

fi : X −→
n∏

i=1

Ai

is an object of R.
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Objects of C∗-relations are also called representations.
A C∗-relation R on a set X is said to be compact if, in addition, the following condition is fulfilled:
C4: for any non-empty set Λ, if fλ : X −→ Aλ is an object of R for every λ ∈ Λ, then the function

∏

λ∈Λ
fλ : X −→

∏

λ∈Λ
Aλ

is also an object of R.
The following statement is a reformulation of Theorem 2.10 from [5] (see also [2], Proposition 1.3.6;

[3], Sect. 3.1; and [4], Sect. 1.4).
Proposition 1. Let R be a C∗-relation on a set X. Then, R is compact if and only if there exists

an initial object in R.
In what follows, for a compact C∗-relation R on a set X, we consider an initial object i : X −→ A of

R. The C∗-algebra A is denoted by C∗(R). Thus, for every representation j : X −→ B of R there exists
a unique ∗-homomorphism of C∗-algebras k : C∗(R) −→ B such that the diagram

X

i
j

k BR

is commutative, i.e., j = k ◦ i. In this case, we denote the ∗-homomorphism k by j. Obviously, we have

j = j ◦ i. (2)

3. FUNCTORS BETWEEN COMPACT C∗-RELATIONS

Throughout this section, R1 and R2 are compact C∗-relations on sets X1 and X2 respectively. Let
it : Xt −→ C∗(Rt) be an initial object in the category Rt, where t = 1, 2.

Assume that we are given a ∗-homomorphism of C∗-algebras α : C∗(R1) −→ C∗(R2). Now, we are
going to construct a covariant functor Fα : R2 −→ R1 associated with the ∗-homomorphism α.

Firstly, we take an object j : X2 −→ B of the category R2. To define the image of j under the action
of the functor Fα : R2 −→ R1, we take the ∗-homomorphism of C∗-algebras j : C∗(R2) −→ B making
the diagram

X2

i2
j

j
BR

(3)

commutative and consider the function j ◦ α ◦ i1 : X1 −→ B. By the axiom C3, the composition
j ◦ α ◦ i1 is an object of the category R1. We define Fα(j) by

Fα(j) := j ◦ α ◦ i1. (4)

Secondly, to define the arrow function for Fα, we take a morphism ϕ : B −→ C in R2 making the
diagram

X2

j k

B
�

C

(5)
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commutative. Then, we can consider the objects Fα(j) : X1 −→ B and Fα(k) : X1 −→ C in the
category R1 and the diagram

B
�

C.

X1

(6)

We claim that it is commutative. Indeed, using the commutativity of the diagrams (3) and (5), we get
ϕ ◦ j ◦ i2 = ϕ ◦ j = k, which means that the diagram

X2

i2
k

� � j BR

is commutative. Hence, by definition of the ∗-homomorphism k : C∗(R2) −→ C, we obtain the equality

ϕ ◦ j = k. (7)

Further, by (7), we have

ϕ ◦ Fα(j) = ϕ ◦ j ◦ α ◦ i1 = k ◦ α ◦ i1 = Fα(k),

which means the commutativity of the diagram (6), as claimed. Therefore, the ∗-homomorphism ϕ can
be viewed as a morphism from Fα(j) to Fα(k) in the category R1, and we can put

Fα(ϕ) := ϕ. (8)

It is straightforward to check that Fα preserves the identity morphisms and the compositions of
morphisms. That is, we have

Fα(1j) = 1Fα(j) and Fα(ψ ◦ ϕ) = Fα(ψ) ◦ Fα(ϕ)

whenever j is an object of the category R2, 1j : j −→ j is the identity arrow in R2, ϕ and ψ are
morphisms in R2 such that the composite ψ ◦ ϕ is defined in R2. Thus, the formulas (4) and (8) define
the object and the arrow functions respectively, and we have constructed the functor Fα : R2 −→ R1, as
desired.

Furthermore, if α : C∗(R1) −→ C∗(R2) is an isomorphism of C∗-algebras, then we have the
functors Fα : R2 −→ R1 and Fα−1 : R1 −→ R2, where α−1 : C∗(R2) −→ C∗(R1) is the inverse of the
∗-homomorphism α.

We claim that both composites Fα−1 ◦ Fα and Fα ◦ Fα−1 are the identity functors on the categories
R2 and R1, respectively. Indeed, it suffices to prove that

Fα−1 ◦ Fα = 1R2 , (9)

where 1R2 is the identity functor on R2. To show this, we take an object j in the category R2. Using the
equality (2) and the commutative diagram (3), we get

Fα−1 ◦ Fα(j) = Fα−1(j ◦ α ◦ i1) = j ◦ α ◦ i1 ◦ α−1 ◦ i2 = j ◦ α ◦ α−1 ◦ i2 = j ◦ i2 = j.

Of course, we also have Fα−1 ◦ Fα(ϕ) = ϕ whenever ϕ is a morphism in the category R2. Hence,
the equality (9) holds, as claimed. Thus, the functors Fα : R2 −→ R1 and Fα−1 : R1 −→ R2 are
isomorphisms of the categories. Summarizing the above observations, we have

Theorem 1. Let X1 −→ C∗(R1) and X2 −→ C∗(R2) be initial objects in compact C∗-relations
R1 and R2, respectively. Then, every ∗-homomorphism of C∗-algebras α : C∗(R1) −→ C∗(R2)
generates the covariant functorFα : R2 −→ R1. Moreover, ifα is an isomorphism of C∗-algebras,
then Fα is an isomorphism of the categories R2 and R1.
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4. ∗-POLYNOMIAL RELATIONS

This section deals with ∗-polynomial relations associated with ∗-polynomial pairs. We begin with
necessary definitions.

Definition 1. If X is a non-empty set and P is a non-empty subset of the free ∗-algebra F (X), then
the pair (X,P ) is said to be ∗-polynomial.

To introduce an additional notation, we recall the universal property of the free ∗-algebra F (X).
Namely, for every mapping f : X −→ A from a set X to a ∗-algebra A there exists a unique
∗-homomorphism f̃ : F (X) −→ A which is an extension of f to F (X). That is, for the embedding
iX : X −→ F (X), the diagram

X

iX
f

F(X)
f̃

A

is commutative.

Definition 2. A function f : X −→ A from a set X to a C∗-algebra A is called a representation of
a ∗-polynomial pair (X,P ) provided that P ⊂ Kerf̃ , where Kerf̃ is the kernel of the ∗-homomorphism
f̃ : F (X) −→ A.

Let (X,P ) be a ∗-polynomial pair. We consider the category R(X,P ) whose objects are all
representations of the ∗-polynomial pair (X,P ). For representations j : X −→ A and k : X −→ B of
(X,P ), a morphism from j to k is any ∗-homomorphism of C∗-algebras ϕ : A −→ B such that the
diagram (1) is commutative. Thus, R(X,P ) is a full subcategory of the null C∗-relation FX on X.

Definition 3. The category R(X,P ) is called a ∗-polynomial relation associated with a
∗-polynomial pair (X,P ).

In what follows, we treat certain properties of ∗-polynomial relations.

Proposition 2. For any ∗-polynomial pair (X,P ), the ∗-polynomial relation R(X,P ) is a
C∗-relation.

Proof. The axiom C1 is obviously satisfied in the category R(X,P ). Further, let ϕ : A −→ B be a
∗-homomorphism of C∗-algebras and f : X −→ A be a function. Consider the diagram

iX

F(X)
f̃

X

f

� � f

A

�

B.

Using the universal property of the free ∗-algebra F (X), we get the equality ϕ̃ ◦ f = ϕ ◦ f̃ . So we have

ker f̃ ⊂ ker(ϕ ◦ f̃) = ker(ϕ̃ ◦ f).

This implies the axiom C3.

If ϕ is an injective ∗-homomorphism, then one has the equality ker f̃ = ker ϕ̃ ◦ f . Hence, the axiom
C2 holds.
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Finally, let fi : X −→ Ai be a function for every i = 1, . . . , n, where n ∈ N. For each k ∈ {1, . . . , n},
we consider the diagram

X

n

i = 1
fi

n

i = 1
fi

fk

n

i = 1
Ai

prk Ak ,

F(X)

fk

where prk denotes the natural projection. Since prk ◦
∏̃n

i=1 fi ◦ iX = prk ◦
∏n

i=1 fi = fk, one has the

equality prk ◦
∏̃n

i=1 fi = f̃k. Therefore, we get
∏n

i=1 f̃i =
∏̃n

i=1 fi as well as the equalities

n⋂

i=1

ker f̃i = ker

(
n∏

i=1

f̃i

)
= ker

⎛

⎝
ñ∏

i=1

fi

⎞

⎠ .

This implies the axiom C4f. Thus, the category R(X,P ) is a C∗-relation. �

The following is an example of a ∗-polynomial relation associated with a ∗-polynomial pair which is
not a compact C∗-relation.

Example. Let X = {x} be a one-element set and P = {xx∗ − x∗x} be the subset of the free
∗-algebra F (X) consisting of the single polynomial. Consider the ∗-polynomial relation R(X,P )
associated with the ∗-polynomial pair (X,P ). Let A be a C∗-algebra and a ∈ A be a non-zero normal
element. For each n ∈ N we take the object fn of the category R(X,P ) defined by

fn : X −→ A : x �−→ na.

Since supn∈N ||fn(x)|| = +∞, the axiom C4 is false in the ∗-polynomial relation R(X,P ). That is,
the category R(X,P ) is not a compact C∗-relation, as desired.

Definition 4. If a ∗-polynomial relation R(X,P ) has an initial object i : X −→ A, then the
C∗-algebra A is called the universal C∗-algebra generated by the ∗-polynomial pair (X,P ) and is
denoted by C∗(X,P ).

The following theorem states that every C∗-algebra is a universal C∗-algebra generated by a
∗-polynomial pair.

Theorem 2. For every C∗-algebra A there exists a ∗-polynomial pair (X,P ) such that A =
C∗(X,P ).

Proof. Let us take the identity mapping 1A : A −→ A and its extension 1̃A : F (A) −→ A. We have

1̃A ◦ iA = 1A. (10)

We prove that A is the universal C∗-algebra generated by the ∗-polynomial pair (A,Ker1̃A).
More precisely, we claim that 1A : A −→ A is an initial object in the ∗-polynomial relation

R(A,Ker1̃A). Indeed, let us take a representation f : A −→ B of the ∗-polynomial pair (A,Ker1̃A).
We need to show that there is a unique ∗-homomorphism from the C∗-algebra A to the C∗-algebra B
such that the diagram

A

1A f

A B

(11)
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is commutative. Informally, we have to show that f is a ∗-homomorphism of C∗-algebras or, more
generally, that every object in the category R(A,Ker1̃A) is a ∗-homomorphism of C∗-algebras.

Since f is a representation of the ∗-polynomial pair (A,Ker1̃A), we have Ker1̃A ⊂ Kerf̃ . This
inclusion guarantees that there exists a unique ∗-homomorphism ϕ : A −→ B of C∗-algebras making
the diagram

F(A)
f̃

1̃A

B

A

�

commutative, i.e., we have

f̃ = ϕ ◦ 1̃A. (12)

Further, we consider the diagram

F(A)

f̃A
f

A
�

B.

1̃A

1A

iA

Using the universal property of the ∗-algebra F (A) together with the equalities (12) and (10), we get

f = f̃ ◦ iA = ϕ ◦ 1̃A ◦ iA = ϕ ◦ 1A.
This means that we have the unique ∗-homomorphism, namely, ϕ = f , making the diagram (11)
commutative. Thus, 1A : A −→ A is an initial object in the ∗-polynomial relation R(A,Ker1̃A), as
claimed. This completes the proof. �

Corollary 1. For every C∗-algebra A the ∗-polynomial relation R(A,Ker1̃A) is a compact
C∗-relation.

Proof. Combining Propositions 1, 2 and the fact that the identity function 1A : A −→ A is an initial
object in the category R(A,Ker1̃A), we get the statement. �

Finally, we use the previous results to prove
Theorem 3. Every compact C∗-relation is isomorphic to a ∗-polynomial relation.
Proof. Let R be a compact C∗-relation on a set X and i : X −→ C∗(R) be its initial object.

By Theorem 2, we have C∗(R) = C∗(C∗(R),Ker1̃C∗(R)), i.e., C∗(R) is the universal
C∗-algebra generated by the ∗-polynomial pair (C∗(R),Ker1̃C∗(R)), and the identity mapping 1C∗(R) :

C∗(R) −→ C∗(R) is an initial object in the ∗-polynomial relation R(C∗(R),Ker1̃C∗(R)) associated
with (C∗(R),Ker1̃C∗(R)). Corollary 1 guarantees that the ∗-polynomial relationR(C∗(R),Ker1̃C∗(R))

is a compact C∗-relation.
Since the identity ∗-homomorphism 1C∗(R) : C

∗(R) −→ C∗(R) is an isomorphism of C∗-algebras,
Theorem 1 yields the functor

F1C∗(R)
: R(C∗(R),Ker1̃C∗(R)) −→ R,

which is an isomorphism of compact C∗-relations. The proof is complete. �
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