On a Semigroup C^{*}-Algebra for a Semidirect Product

E. V. Lipacheva ${ }^{1,2^{*}}$
(Submitted by G. G. Amosov)
${ }^{1}$ Chair of Higher Mathematics, Kazan State Power Engineering University, Kazan, 420066 Russia
${ }^{2}$ Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, 420008 Russia
Received April 2, 2023; revised April 18, 2023; accepted May 4, 2023

Abstract

The paper deals with the reduced semigroup C^{*}-algebra for the semidirect product of a semigroup S by a group G. We represent this C^{*}-algebra as a reduced crossed product of the reduced semigroup C^{*}-algebra for S by G. The purpose of the paper is to demonstrate that the crossed product C^{*}-algebras and the semidirect products of semigroups are closely related. We prove that the action of the group G on the semigroup S can be extended from S to the reduced semigroup C^{*}-algebra $C_{r}^{*}(S)$. We show that the reduced semigroup C^{*}-algebra for a semidirect product $S \rtimes G$ is isomorphic to the reduced crossed product C^{*}-algebra $C_{r}^{*}(S) \rtimes_{r} G$. We apply this result to the study of the structure of the reduced semigroup C^{*}-algebra for the semidirect product $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$of the additive group \mathbb{Z} of all integers and the multiplicative semigroup \mathbb{Z}^{\times}of integers without zero.

DOI: 10.1134/S1995080223060318
Keywords and phrases: covariant representation, crossed product C^{*}-algebra, dynamical system, reduced crossed product C^{*}-algebra, reduced semigroup C^{*}-algebra, semidirect product of semigroups.

1. INTRODUCTION

In this paper we study the reduced semigroup C^{*}-algebra for a semidirect product of a semigroup S by a group G. The main purpose of our work is to represent this C^{*}-algebra as a reduced crossed product of the reduced semigroup C^{*}-algebra $C_{r}^{*}(S)$ by G.

The reduced semigroup C^{*}-algebras are very natural objects. They are generated by the left regular representations of semigroups with the cancellation property. The start in studying these algebras was made by Coburn [1, 2] who considered the reduced semigroup C^{*}-algebra for the additive semigroup of the non-negative integers. Douglas [3] investigated the case of subsemigroups in the additive group of the real numbers. Murphy [4, 5] generalized the results from [1-3] to the case of the reduced semigroup C^{*}-algebras for the positive cones in ordered groups. For extensive literature and history of the study of semigroup C^{*}-algebras, the reader is referred, for example, to [6] and the references therein.

The subject of the crossed products C^{*}-algebras is a well-developed branch of the theory of C^{*}-algebras. On the one hand, the crossed products provide interesting examples of C^{*}-algebras. On the other hand, the problem of representing a given C^{*}-algebra as a crossed product C^{*}-algebra attract a great deal of attention because it has important applications to a variety of questions in the theory of C^{*}-algebras. A systematic exposition of the crossed products is contained in the monograph [7].

There are two types of the crossed products of a C^{*}-algebra \mathcal{A} by a locally compact group G. Namely, these are the full and the reduced crossed products. The full crossed product $\mathcal{A} \rtimes_{\alpha} G$ should be thought as a twisted maximal tensor product of \mathcal{A} with the full group C^{*}-algebra $C^{*}(G)$ of the group G. The reduced crossed product $\mathcal{A} \rtimes_{\alpha, r} G$ should be regarded as a twisted minimal (or spacial) tensor product of \mathcal{A} by the reduced group C^{*}-algebra $C_{r}^{*}(G)$.

[^0]Our research was motivated by the relationship between the crossed products of algebras by groups and the semidirect products of groups. Suppose that H and G are locally compact groups and $\beta: G \longrightarrow \operatorname{Aut}(H)$ is a homomorphism such that an action $(g, h) \mapsto \beta_{g}(h)$ is continuous from the direct product $G \times H$ to H. Then, the semidirect product $H \rtimes_{\beta} G$ is the locally compact group. The action β of the group G can be extended from the group H to the C^{*}-algebra $C^{*}(H)$ (or $C_{r}^{*}(H)$). Denote this action by α. Then, there are natural isomorphisms ([8], II.10.3.15)

$$
C^{*}\left(H \rtimes_{\beta} G\right) \cong C^{*}(H) \rtimes_{\alpha} G \quad \text { and } \quad C_{r}^{*}\left(H \rtimes_{\beta} G\right) \cong C_{r}^{*}(H) \rtimes_{\alpha, r} G .
$$

In this paper, we will obtain an analogue of the second isomorphism for the reduced semigroup C^{*}-algebra of a discrete semigroup. Namely, let S be a discrete left cancellative semigroup, G be a discrete group and $\beta: G \longrightarrow \operatorname{Aut}(S)$ be a group homomorphism. Then, the semidirect product $S \rtimes_{\beta} G$ is the left cancellative semigroup. In Section 2 we will see that there exists an isomorphism

$$
C_{r}^{*}\left(S \rtimes_{\beta} G\right) \cong C_{r}^{*}(S) \rtimes_{\alpha, r} G,
$$

where $\alpha: G \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(S)\right)$ is the group homomorphism induced by the homomorphism β. In Section 3, the above result will be applied to the reduced semigroup C^{*}-algebra $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right)$which was studied in [$9-11$].

2. PRELIMINARIES

We begin by recalling the definition of the reduced semigroup C^{*}-algebra for a semigroup.
Let S be a discrete left cancellative semigroup. As usual, the symbol $l^{2}(S)$ stands for the Hilbert space of all square summable complex-valued functions on S. For every $a \in S$, we denote by e_{a} the function in $l^{2}(S)$ which is defined as follows: $e_{a}(b)=1$, if $a=b$, and $e_{a}(b)=0$, if $a \neq b$, where $b \in S$. Then, the set of functions $\left\{e_{a} \mid a \in S\right\}$ is an orthonormal basis in the Hilbert space $l^{2}(S)$.

In the C^{*}-algebra of all bounded linear operators $B\left(l^{2}(S)\right)$ on the Hilbert space $l^{2}(S)$, we define the C^{*}-subalgebra $C_{r}^{*}(S)$ generated by the set of isometries $\left\{T_{a} \mid a \in S\right\}$, where $T_{a}\left(e_{b}\right)=e_{a b}$ for $a, b \in S$. It is called the reduced semigroup C^{*}-algebra. The identity element in this algebra is denoted by I.

Now we recall the necessary notions concerning the crossed products of C^{*}-algebras by locally compact groups [7, 8].

Let \mathcal{A} be a C^{*}-algebra, G be a locally compact group and $\alpha: G \longrightarrow \operatorname{Aut}(\mathcal{A})$ be a continuous homomorphism of groups. The triple (\mathcal{A}, G, α) is called a dynamical system.

A covariant representation of the dynamical system (\mathcal{A}, G, α) is a pair (π, u) consisting of a nondegenerate representation $\pi: \mathcal{A} \longrightarrow B(H)$ and a unitary representation $u: G \longrightarrow B(H)$ for a Hilbert space H such that

$$
\pi\left(\alpha_{g}(a)\right)=u(g) \pi(a) u(g)^{*}
$$

for all $a \in \mathcal{A}$ and $g \in G$ [7, Def. 2.10].
Let $C_{c}(G, \mathcal{A})$ be the space of finitely supported functions $f: G \longrightarrow \mathcal{A}$. This space becomes the $*-$ algebra with a convolution and an involution twisted with using the homomorphism α [7, p. 48]. The Banach algebra $L^{1}(G, \mathcal{A})$ is the completion of $C_{c}(G, \mathcal{A})$ with respect to the L^{1}-norm. If G is a discrete group, then $C_{c}(G, \mathcal{A})=\mathcal{A} G$ is an $*$-algebra of finite linear combinations of elements of the group G with coefficients from \mathcal{A}.

If (π, u) is a covariant representation of (\mathcal{A}, G, α) on H, then there exists an associated *representation $\pi \rtimes u: C_{c}(G, \mathcal{A}) \longrightarrow B(H)$ such that $\|(\pi \rtimes u) f\| \leq\|f\|_{1}$, where $f \in C_{c}(G, \mathcal{A})$ [7, Prop. 2.23]. The completion of $C_{c}(G, \mathcal{A})$ with respect to the universal norm

$$
\|f\|:=\sup \{\|(\pi \rtimes u) f\|:(\pi, u) \text { is a covariant representation of }(\mathcal{A}, G, \alpha)\}
$$

is called the (full) crossed product of \mathcal{A} by G and denoted by $\mathcal{A} \rtimes_{\alpha} G$ [7, Lem. 2.27].
The term "crossed product" will always mean "full crossed product".
It is worth noting that for every dynamical system (\mathcal{A}, G, α) there exists a crossed product. Moreover, it is unique up to an isomorphism. For proving these facts we refer the reader to [12].

Next let us define the reduced crossed product C^{*}-algebra [8].

Let $\pi: \mathcal{A} \longrightarrow B(H)$ be a faithful representation. Define representations $\pi_{\alpha}: \mathcal{A} \longrightarrow B\left(L^{2}(G, H)\right)$ and $\lambda: G \longrightarrow B\left(L^{2}(G, H)\right)$ as follows

$$
\begin{gather*}
\left(\pi_{\alpha}(a) \chi\right)(h)=\pi\left(\alpha_{h^{-1}}(a)\right)(\chi(h)), \tag{1}\\
(\lambda(g) \chi)(h)=\chi\left(g^{-1} h\right) \tag{2}
\end{gather*}
$$

where $a \in \mathcal{A}, g, h \in G, \chi \in L^{2}(G, H)$. Then, the pair $\left(\pi_{\alpha}, \lambda\right)$ is a covariant representation of the dynamical system (\mathcal{A}, G, α) on the Hilbert space $L^{2}(G, H)$. The reduced norm on $C_{c}(G, \mathcal{A}) \subset L^{1}(G, \mathcal{A})$ is given by

$$
\|f\|_{r}:=\left\|\left(\pi_{\alpha} \rtimes \lambda\right) f\right\|,
$$

where $f \in C_{c}(G, \mathcal{A})$. The completion of $C_{c}(G, \mathcal{A})$ with respect to $\|\cdot\|_{r}$ is called the reduced crossed product of \mathcal{A} by G and denoted by $\mathcal{A} \rtimes_{\alpha, r} G$.

If G is a discrete group, then $L^{2}(G, H)=l^{2}(G, H) \cong H \otimes l^{2}(G)$. The formulas (1) and (2) can be rewritten as follows

$$
\pi_{\alpha}(a)\left(\xi \otimes e_{h}\right)=\pi\left(\alpha_{h^{-1}}(a)\right) \xi \otimes e_{h}, \quad \lambda(g)\left(\xi \otimes e_{h}\right)=\xi \otimes e_{g h}
$$

where $a \in \mathcal{A}, g, h \in G, \xi \in H$. The set of functions $\left\{e_{h} \mid h \in G\right\}$ is an orthonormal basis in the Hilbert space $l^{2}(G)$. If G is a discrete group and \mathcal{A} is a unital C^{*}-algebra, then one can say that the reduced crossed product $\mathcal{A} \rtimes_{\alpha, r} G$ is generated by the set $\left\{\pi_{\alpha}(a) \mid a \in \mathcal{A}\right\} \cup\{\lambda(g) \mid g \in G\}$.

If G is amenable, then the reduced norm coincides with the universal norm on $C_{c}(G, \mathcal{A})$ and we have $\mathcal{A} \rtimes_{\alpha, r} G=\mathcal{A} \rtimes_{\alpha} G$ [7, Th. 7.13].

3. THE SEMIGROUP C^{*}-ALGEBRA $C_{r}^{*}\left(S \rtimes_{\beta} G\right)$

Let S be a discrete left cancellative semigroup, and G be a discrete group. Let $\beta: G \longrightarrow \operatorname{Aut}(S)$ be a group homomorphism. Then, the semidirect product $S \rtimes_{\beta} G$ is the semigroup with the underlying set $S \times G$ and the semigroup operation given by

$$
(a, g)(b, h):=\left(a \beta_{g}(b), g h\right) .
$$

It is easy to see that the semigroup $S \rtimes_{\beta} G$ has the left cancellation property. Here, the object of our study is the reduced semigroup C^{*}-algebra $C_{r}^{*}\left(S \rtimes_{\beta} G\right)$. Let us fix an arbitrary element $s \in S$ and introduce the notation $U_{g, s}:=T_{(s, e)}^{*} T_{(s, g)}$ and $V_{a}:=T_{(a, e)}$, where $g \in G, a \in S$ and e is the unit of the group G. We show that the action of the operator $U_{g, s}$ on the space $l^{2}\left(S \rtimes_{\beta} G\right)$ does not depend on the choice of the element s. To do this we find out how this operator acts on basis vectors. We have

$$
\begin{equation*}
U_{g, s} e_{(a, h)}=T_{(s, e)}^{*} T_{(s, g)} e_{(a, h)}=T_{(s, e)}^{*} e_{\left(s \beta_{g}(a), g h\right)}=T_{(s, e)}^{*} T_{(s, e)} e_{\left(\beta_{g}(a), g h\right)}=e_{\left(\beta_{g}(a), g h\right)} \tag{3}
\end{equation*}
$$

where $g, h \in G, a \in S$. Thus, the action of the operator $U_{g, s}$ on basis vectors has nothing to do with the element s. So the operator $U_{g, s}$ is denoted by U_{g}.

Lemma 1. The following properties are fulfilled:

1) The operator U_{g} is unitary for every $g \in G$;
2) The C^{*}-algebra $C_{r}^{*}\left(S \rtimes_{\beta} G\right)$ is generated by the unitary operators $U_{g}, g \in G$, and the isometries $V_{a}, a \in S$.

Proof. 1) First we calculate the values of the operator U_{g}^{*} at the basis vectors

$$
\begin{equation*}
U_{g}^{*} e_{(a, h)}=T_{(s, g)}^{*} T_{(s, e)} e_{(a, h)}=T_{(s, g)}^{*} e_{(s a, h)}=T_{(s, g)}^{*} T_{(s, g)} e_{\left(\beta_{g^{-1}}(a), g^{-1} h\right)}=e_{\left(\beta_{g^{-1}}(a), g^{-1} h\right)}, \tag{4}
\end{equation*}
$$

where $g, h \in G, a \in S$. Next, using (3) and (4), we get

$$
\left.U_{g} U_{g}^{*} e_{(a, h)}=U_{g} e_{\left(\beta_{g}-1\right.}(a), g^{-1} h\right)=e_{(a, h)}, \quad U_{g}^{*} U_{g} e_{(a, h)}=U_{g}^{*} e_{\left(\beta_{g}(a), g h\right)}=e_{(a, h)}
$$

for all $g, h \in G, a \in S$. Hence, we have $U_{g}^{*} U_{g}=U_{g} U_{g}^{*}=I$.
2) The statement follows from the following representation

$$
T_{(a, g)}=T_{(s, e)}^{*} T_{(s, e)} T_{(a, g)}=T_{(s, e)}^{*} T_{(s a, g)}=T_{(s, e)}^{*} T_{(s, g)} T_{\left(\beta_{g^{-1}}(a), e\right)}=U_{g} V_{\beta_{g^{-1}}(a)},
$$

where $a \in S, g \in G$. We note that using the actions of operators $T_{(a, g)}, V_{a}$ and U_{g} on the basis vectors, it is easy to show one more equality $T_{(a, g)}=V_{a} U_{g}$.

Further we consider the C^{*}-algebra $C_{r}^{*}(S)$. In the next lemma it will be shown that any automorphism of the semigroup S induces an automorphism of the semigroup C^{*}-algebra $C_{r}^{*}(S)$.

Lemma 2. Let $\gamma: S \longrightarrow S$ be an automorphism of the semigroup S. Then, there exists a unique automorphism $\bar{\gamma}: C_{r}^{*}(S) \longrightarrow C_{r}^{*}(S)$ such that $\bar{\gamma}\left(T_{a}\right)=T_{\gamma(a)}$ whenever $a \in S$.

Proof. Consider the unitary operator $U: l^{2}(S) \longrightarrow l^{2}(S): e_{b} \mapsto e_{\gamma(b)}, b \in S$, and the isometric *-homomorphism $\tilde{\gamma}: C_{r}^{*}(S) \longrightarrow B\left(l^{2}(S)\right): A \longmapsto U A U^{*}, A \in C_{r}^{*}(S)$. It is easy to verify that the equality $T_{\gamma(a)}=U T_{a} U^{*}$ holds for each $a \in S$. Hence, we have $\tilde{\gamma}\left(T_{a}\right)=T_{\gamma(a)}$ whenever $a \in S$. Since γ is an automorphism of S, the image of $\tilde{\gamma}$ contains the dense $*$-subalgebra of the C^{*}-algebra $C_{r}^{*}(S)$. Therefore the image of $\tilde{\gamma}$ is dense in $C_{r}^{*}(S)$. Denote by $\bar{\gamma}$ the corestriction of $\tilde{\gamma}$ to $C_{r}^{*}(S)$. Of course, $\bar{\gamma}$ is an automorphism of the C^{*}-algebra $C_{r}^{*}(S)$. The uniqueness of the required automorphism is obvious. \square

Thus, if $\beta: G \longrightarrow \operatorname{Aut}(S)$ is a group homomorphism, then we have the group homomorphism $\alpha: G \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(S)\right)$ such that $\alpha_{g}\left(T_{a}\right)=T_{\beta_{g}(a)}$ for all $g \in G, a \in S$. So we have the dynamical system $\left(C_{r}^{*}(S), G, \alpha\right)$.

Next, let us construct the reduced crossed product $C_{r}^{*}(S) \rtimes_{\alpha, r} G$. Firstly, using the inclusion $C_{r}^{*}(S) \subset B\left(l^{2}(S)\right)$, we define a representation $\pi: C_{r}^{*}(S) \longrightarrow B\left(l^{2}(S) \otimes l^{2}(G)\right)$ on generators of the C^{*}-algebra $C_{r}^{*}(S)$ as follows:

$$
\begin{equation*}
\pi\left(T_{a}\right)\left(e_{b} \otimes e_{g}\right)=\alpha_{g^{-1}}\left(T_{a}\right) e_{b} \otimes e_{g}=e_{\beta_{g^{-1}}(a) b} \otimes e_{g} \tag{5}
\end{equation*}
$$

where $a, b \in S, g \in G$. Secondly, we define a regular representation $\lambda: G \longrightarrow B\left(l^{2}(S) \otimes l^{2}(G)\right)$ by

$$
\begin{equation*}
\lambda(g)\left(e_{b} \otimes e_{h}\right)=e_{b} \otimes e_{g h}, \tag{6}
\end{equation*}
$$

where $b \in S, g, h \in G$. Then, the pair (π, λ) is a covariant representation of the dynamical system $\left(C_{r}^{*}(S), G, \alpha\right)$. Since the C^{*}-algebra $C_{r}^{*}(S)$ is unital and the group G is discrete, the C^{*}-algebra $C_{r}^{*}(S) \rtimes_{\alpha, r} G$ is generated by the set $\left\{\pi(A) \mid A \in C_{r}^{*}(S)\right\} \cup\{\lambda(g) \mid g \in G\}$. Therefore, because the C^{*}-algebra $C_{r}^{*}(S)$ is generated by the set of operators $\left\{T_{a} \mid a \in S\right\}$, one can see that the C^{*}-algebra $C_{r}^{*}(S) \rtimes_{\alpha, r} G$ is generated by the set $\left\{\pi\left(T_{a}\right) \mid a \in S\right\} \cup\{\lambda(g) \mid g \in G\}$.

Theorem 1. Let S be a discrete left cancellative semigroup and G be a discrete group. Let $\beta: G \longrightarrow \operatorname{Aut}(S)$ and $\alpha: G \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(S)\right)$ be group homomorphisms such that $\alpha_{g}\left(T_{a}\right)=T_{\beta_{g}(a)}$ for all $g \in G, s \in S$. Then, there exists an isomorphism of C^{*}-algebras

$$
C_{r}^{*}\left(S \rtimes_{\beta} G\right) \cong C_{r}^{*}(S) \rtimes_{\alpha, r} G .
$$

Proof. Let us consider the operator $U: l^{2}(S) \otimes l^{2}(G) \longrightarrow l^{2}\left(S \rtimes_{\beta} G\right)$ defined by the formula

$$
\begin{equation*}
U\left(e_{a} \otimes e_{g}\right)=e_{\left(\beta_{g}(a), g\right)}, \tag{7}
\end{equation*}
$$

where $a \in S, g \in G$. Obviously, U is a unitary operator.
Furthermore, we claim that the following diagrams are commutative:

for every $g \in G$, and

for every $a \in S$.
Indeed, using (3) and (7), we get

$$
U_{g} U\left(e_{b} \otimes e_{h}\right)=U_{g} e_{\left(\beta_{h}(b), h\right)}=e_{\left(\beta_{g}\left(\beta_{h}(b)\right), g h\right)}=e_{\left(\beta_{g h}(b), g h\right)},
$$

where $b \in S, g, h \in G$. On the other hand, by (6) and (7), we have

$$
U \lambda(g)\left(e_{b} \otimes e_{h}\right)=U\left(e_{b} \otimes e_{g h}\right)=e_{\left(\beta_{g h}(b), g h\right)} .
$$

Thus, the commutativity of the first diagram is shown.
Consider the second diagram. On the one hand, we have

$$
V_{a} U\left(e_{b} \otimes e_{h}\right)=T_{(a, e)} e_{\left(\beta_{h}(b), h\right)}=e_{\left(a \beta_{h}(b), h\right)},
$$

where $a, b \in S, h \in G$. On the other hand, using (5), we get

$$
U \pi\left(T_{a}\right)\left(e_{b} \otimes e_{h}\right)=U\left(e_{\beta_{h^{-1}}(a) b} \otimes e_{h}\right)=e_{\left(\beta_{h}\left(\beta_{h^{-1}}(a) b\right), h\right)}=e_{\left(a \beta_{h}(b), h\right)} .
$$

The commutativity of the diagram is proved, as claimed. Therefore, the equalities

$$
\begin{equation*}
\lambda(g)=U^{*} U_{g} U, \quad \pi\left(T_{a}\right)=U^{*} V_{a} U \tag{8}
\end{equation*}
$$

are true for all $g \in G$ and $a \in S$ respectively.
Further we define the isometric $*$-homomorphism

$$
\phi: C_{r}^{*}\left(S \rtimes_{\beta} G\right) \longrightarrow B\left(l^{2}(S) \otimes l^{2}(G)\right): A \longmapsto U^{*} A U
$$

where $A \in C_{r}^{*}\left(S \rtimes_{\beta} G\right)$. By (8), we have

$$
\phi\left(U_{g}\right)=\lambda(g), \quad \phi\left(V_{a}\right)=\pi\left(T_{a}\right)
$$

whenever $g \in G$ and $a \in S$.
The image of ϕ is dense in the C^{*}-algebra $C_{r}^{*}(S) \rtimes_{\alpha, r} G$. It follows from the fact that the C^{*} algebra $C_{r}^{*}(S) \rtimes_{\alpha, r} G$ is generated by the set $\left\{\pi\left(T_{a}\right) \mid a \in S\right\} \cup\{\lambda(g) \mid g \in G\}$. Thus, the homomorphism ϕ realizes the required isomorphism of C^{*}-algebras $C_{r}^{*}\left(S \rtimes_{\beta} G\right)$ and $C_{r}^{*}(S) \rtimes_{\alpha, r} G$.

4. THE SEMIGROUP C^{*}-ALGEBRA $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right)$

In this section we apply Theorem 1 to the study of the structure of the reduced semigroup C^{*}-algebra $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right)$.

As usual, we denote by \mathbb{Z} the additive group of all integers. Let \mathbb{Z}^{\times}be the multiplicative semigroup $\mathbb{Z} \backslash\{0\}$ and let $\varphi: \mathbb{Z}^{\times} \longrightarrow \operatorname{End}(\mathbb{Z})$ be the semigroup homomorphism from \mathbb{Z}^{\times}into the semigroup of endomorphisms of the group \mathbb{Z} given by

$$
\varphi_{m}(n):= \begin{cases}n, & \text { if } m>0 \\ -n, & \text { if } m<0\end{cases}
$$

where $m \in \mathbb{Z}^{\times}, n \in \mathbb{Z}$. We consider the semidirect product of \mathbb{Z} and \mathbb{Z}^{\times}with respect to φ which is denoted by $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$. It is a semigroup with respect to the multiplication defined by

$$
(m, n)(k, l)=\left(m+\varphi_{n}(k), n l\right),
$$

where $m, k \in Z, n, l \in Z^{\times}$. It is straightforward to verify that $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$is a semigroup with the cancellation property.

The reduced semigroup C^{*}-algebra $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right)$of the semidirect product $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$is studied in [9-11].

Let $\mathbb{Z} \times \mathbb{N}$ be the Cartesian product of the additive group of all integers and the multiplicative semigroup of natural numbers. It is a semigroup under the multiplication $(m, n)(k, l)=(m+k, n l)$, where $m, k \in \mathbb{Z}, n, l \in \mathbb{N}$.

Let $\mathbb{Z}_{2}:=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ be the cyclic group of order two. Let us define the homomorphism of groups $\alpha: \mathbb{Z}_{2} \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(\mathbb{Z} \times \mathbb{N})\right)$. We put $\alpha_{0}=i d$, and α_{1} is well-defined by the action on the generating elements of the C^{*}-algebra $C_{r}^{*}(\mathbb{Z} \times \mathbb{N})$ as follows: $\alpha_{1}\left(T_{(m, n)}\right)=T_{(-m, n)}$ for all $m \in \mathbb{Z}, n \in \mathbb{N}$.

The semigroup C^{*}-algebras $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right), C_{r}^{*}(\mathbb{Z} \times \mathbb{N})$ and the dynamical system $\left(C_{r}^{*}(\mathbb{Z} \times \mathbb{N}), \mathbb{Z}_{2}, \alpha\right)$ were considered in [10]. As a consequence of Theorem 1, we obtain the following assertion. Note that its formulation without a proof was given in [10, Th. 2].

Proposition 1. Let $\alpha: \mathbb{Z}_{2} \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(\mathbb{Z} \times \mathbb{N})\right)$ be the group homomorphism defined by

$$
\alpha_{k}\left(T_{(m, n)}\right)= \begin{cases}T_{(m, n)}, & \text { if } k=0 \\ T_{(-m, n)}, & \text { if } k=1,\end{cases}
$$

where $m \in \mathbb{Z}, n \in \mathbb{N}$. Then, there exists an isomorphism of C^{*}-algebras

$$
C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right) \cong C_{r}^{*}(\mathbb{Z} \times \mathbb{N}) \rtimes_{\alpha} \mathbb{Z}_{2}
$$

Proof. Define the semidirect product $(\mathbb{Z} \times \mathbb{N}) \rtimes_{\beta} \mathbb{Z}_{2}$, where the action of the group \mathbb{Z}_{2} on the semigroup $\mathbb{Z} \times \mathbb{N}$ is given by the formulas $\beta_{0}(m, n)=(m, n)$ and $\beta_{1}(m, n)=(-m, n)$ for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$. It is easy to see we have the semigroup isomorphism

$$
\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times} \cong(\mathbb{Z} \times \mathbb{N}) \rtimes_{\beta} \mathbb{Z}_{2}:(m, n) \mapsto \begin{cases}((m, n), 0), & \text { if } n>0 ; \\ ((m,-n), 1), & \text { if } n<0,\end{cases}
$$

where $m \in \mathbb{Z}, n \in \mathbb{Z}^{\times}$. Moreover, the homomorphisms α and β are connected with the formula $\alpha_{k}\left(T_{(m, n)}\right)=T_{\beta_{k}(m, n)}$, where $k \in\{0,1\}, m \in \mathbb{Z}, n \in \mathbb{N}$. Then, using Theorem 1 and the amenability of the group \mathbb{Z}_{2}, we obtain

$$
C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right) \cong C_{r}^{*}\left((\mathbb{Z} \times \mathbb{N}) \rtimes_{\beta} \mathbb{Z}_{2}\right) \cong C_{r}^{*}(\mathbb{Z} \times \mathbb{N}) \rtimes_{\alpha, r} \mathbb{Z}_{2}=C_{r}^{*}(\mathbb{Z} \times \mathbb{N}) \rtimes_{\alpha} \mathbb{Z}_{2}
$$

In [11], a relation between the C^{*}-algebra $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right)$and the infinite dihedral group was considered. We recall that the infinite dihedral group is the group $D_{\infty}:=\mathbb{Z} \rtimes_{\psi} \mathbb{Z}_{2}$, where $\psi: \mathbb{Z}_{2} \longrightarrow \operatorname{Aut}(\mathbb{Z})$ is the group homomorphism such that

$$
\psi(0)(n)=n \quad \text { and } \quad \psi(1)(n)=-n
$$

whenever $n \in \mathbb{Z}$. It is worth noting that Theorem 3 in [11] is a corollary of Theorem 1.
Finally, using Theorem 1, we prove the following statement. To this end, we introduce some additional notation. Let \mathbb{N} stand for the multiplicative semigroup of natural numbers. By $t r$ we denote both the trivial homomorphism tr : $D_{\infty} \longrightarrow \operatorname{Aut}\left(C_{r}^{*}(\mathbb{N})\right)$ taking each element of D_{∞} to the identity automorphism of the C^{*}-algebra $C_{r}^{*}(\mathbb{N})$ and the trivial action $\operatorname{tr}: D_{\infty} \longrightarrow \operatorname{Aut}(\mathbb{N})$ of the group D_{∞} on the semigroup \mathbb{N}.

Proposition 2. There exists an isomorphism of C^{*}-algebras $C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right) \cong C_{r}^{*}(\mathbb{N}) \rtimes_{\text {tr }} D_{\infty}$.
Proof. Take the Cartesian product $\mathbb{N} \times D_{\infty}$. Here, we treat $\mathbb{N} \times D_{\infty}$ as the semigroup with the coordinatewise binary operation. Obviously, we have the equality $\mathbb{N} \times D_{\infty}=\mathbb{N} \rtimes_{\operatorname{tr}} D_{\infty}$.

It is straightforward to verify that we have the isomorphism of the semigroups $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times} \cong \mathbb{N} \times D_{\infty}$ defined by

$$
(m, n) \longmapsto \begin{cases}(n,(m, 0)), & \text { if } n>0 \\ (-n,(m, 1)), & \text { if } n<0\end{cases}
$$

whenever $m \in \mathbb{Z}, n \in \mathbb{Z}^{\times}$. Then, using Theorem 1 and the amenability of the group D_{∞} (see, for example, [13, Section 1]), we obtain

$$
C_{r}^{*}\left(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}\right) \cong C_{r}^{*}\left(\mathbb{N} \times D_{\infty}\right) \cong C_{r}^{*}(\mathbb{N}) \rtimes_{\mathrm{tr}, r} D_{\infty}=C_{r}^{*}(\mathbb{N}) \rtimes_{\mathrm{tr}} D_{\infty},
$$

as required.

FUNDING

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ("PRIORITY-2030").

REFERENCES

1. L. A. Coburn, "The C^{*}-algebra generated by an isometry," Bull. Am. Math. Soc. 73, 722-726 (1967).
2. L. A. Coburn, "The C^{*}-algebra generated by an isometry. II," Trans. Am. Math. Soc. 137, 211-217 (1969).
3. R. G. Douglas, "On the C^{*}-algebra of a one-parameter semigroup of isometries," Acta Math. 128, 143-152 (1972).
4. G. J. Murphy, "Ordered groups and Toeplitz algebras," J. Oper. Theory 18, 303-326 (1987).
5. G. J. Murphy, "Toeplitz operators and algebras," Math. Z. 208, 355-362 (1991).
6. X. Li, "Semigroup C^{*}-algebras," in Operator Algebras and Applications, Proceedings of the 12th Abel Symposium 2015, Ed. by T. M. Carlsen, N. S. Larsen, S. Neshveyev, and C. Skau (Springer, Cham, 2016), pp. 191-202.
7. D. P. Williams, Crossed Products of C*-Algebras, Vol. 134 of Math. Surv. and Monographs (Am. Math. Soc., Providence, RI, 2007).
8. B. Blackadar, Operator Algebras. Theory of C^{*}-Algebras and von Neumann Algebras, Vol. 122 of Math. Sci. (Springer, Berlin, 2006).
9. E. V. Lipacheva, "Extensions of semigroups by the dihedral groups and semigroup C^{*}-algebras," J. Algebra Appl. (2022). https://doi.org/10.1142/S0219498824500221
10. E. V. Lipacheva, "On the representation of semigroup C^{*}-algebra as a crossed product," Russ. Math. 66 (8), 71-75 (2022).
11. R. N. Gumerov and E. V. Lipacheva, "A semigroup C^{*}-algebra related to the infinite dihedral group," Lobachevskii J. Math. 44 (4), 1332-1340 (2023).
12. I. Raeburn, "On crossed products and Takai duality," Proc. Edinburgh Math. Soc. 31, 321-330 (1988).
13. R. Grigorchuk and R. Yang, "Joint spectrum and the infinite dihedral group," Proc. Steklov Inst. Math. 297, 145-178 (2017).

[^0]: *E-mail: elipacheva@gmail.com

