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Abstract—The paper deals with the reduced semigroup C∗-algebra for the semidirect product of
a semigroup S by a group G. We represent this C∗-algebra as a reduced crossed product of the
reduced semigroup C∗-algebra for S by G. The purpose of the paper is to demonstrate that the
crossed product C∗-algebras and the semidirect products of semigroups are closely related. We
prove that the action of the group G on the semigroup S can be extended from S to the reduced
semigroup C∗-algebra C∗

r (S). We show that the reduced semigroup C∗-algebra for a semidirect
product S �G is isomorphic to the reduced crossed product C∗-algebra C∗

r (S)�r G. We apply this
result to the study of the structure of the reduced semigroup C∗-algebra for the semidirect product
Z�Z

× of the additive groupZ of all integers and the multiplicative semigroupZ
× of integers without

zero.
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1. INTRODUCTION

In this paper we study the reduced semigroup C∗-algebra for a semidirect product of a semigroup
S by a group G. The main purpose of our work is to represent this C∗-algebra as a reduced crossed
product of the reduced semigroup C∗-algebra C∗

r (S) by G.
The reduced semigroup C∗-algebras are very natural objects. They are generated by the left regular

representations of semigroups with the cancellation property. The start in studying these algebras was
made by Coburn [1, 2] who considered the reduced semigroup C∗-algebra for the additive semigroup of
the non-negative integers. Douglas [3] investigated the case of subsemigroups in the additive group of
the real numbers. Murphy [4, 5] generalized the results from [1–3] to the case of the reduced semigroup
C∗-algebras for the positive cones in ordered groups. For extensive literature and history of the study of
semigroup C∗-algebras, the reader is referred, for example, to [6] and the references therein.

The subject of the crossed products C∗-algebras is a well-developed branch of the theory of
C∗-algebras. On the one hand, the crossed products provide interesting examples of C∗-algebras. On
the other hand, the problem of representing a given C∗-algebra as a crossed product C∗-algebra attract
a great deal of attention because it has important applications to a variety of questions in the theory of
C∗-algebras. A systematic exposition of the crossed products is contained in the monograph [7].

There are two types of the crossed products of a C∗-algebra A by a locally compact group G. Namely,
these are the full and the reduced crossed products. The full crossed product A�α G should be thought
as a twisted maximal tensor product of A with the full group C∗-algebra C∗(G) of the group G. The
reduced crossed product A�α,r G should be regarded as a twisted minimal (or spacial) tensor product
of A by the reduced group C∗-algebra C∗

r (G).
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Our research was motivated by the relationship between the crossed products of algebras by groups
and the semidirect products of groups. Suppose that H and G are locally compact groups and
β : G −→ Aut(H) is a homomorphism such that an action (g, h) �→ βg(h) is continuous from the direct
product G×H to H . Then, the semidirect product H �β G is the locally compact group. The action
β of the group G can be extended from the group H to the C∗-algebra C∗(H) (or C∗

r (H)). Denote this
action by α. Then, there are natural isomorphisms ([8], II.10.3.15)

C∗(H �β G) ∼= C∗(H)�α G and C∗
r (H �β G) ∼= C∗

r (H)�α,r G.

In this paper, we will obtain an analogue of the second isomorphism for the reduced semigroup
C∗-algebra of a discrete semigroup. Namely, let S be a discrete left cancellative semigroup, G be a
discrete group and β : G −→ Aut(S) be a group homomorphism. Then, the semidirect product S �β G
is the left cancellative semigroup. In Section 2 we will see that there exists an isomorphism

C∗
r (S �β G) ∼= C∗

r (S)�α,r G,

where α : G −→ Aut(C∗
r (S)) is the group homomorphism induced by the homomorphism β. In Section

3, the above result will be applied to the reduced semigroup C∗-algebra C∗
r (Z�ϕ Z

×) which was studied
in [9–11].

2. PRELIMINARIES

We begin by recalling the definition of the reduced semigroup C∗-algebra for a semigroup.
Let S be a discrete left cancellative semigroup. As usual, the symbol l2(S) stands for the Hilbert

space of all square summable complex-valued functions on S. For every a ∈ S, we denote by ea the
function in l2(S) which is defined as follows: ea(b) = 1, if a = b, and ea(b) = 0, if a �= b, where b ∈ S.
Then, the set of functions {ea | a ∈ S} is an orthonormal basis in the Hilbert space l2(S).

In the C∗-algebra of all bounded linear operators B(l2(S)) on the Hilbert space l2(S), we define the
C∗-subalgebra C∗

r (S) generated by the set of isometries {Ta | a ∈ S}, where Ta(eb) = eab for a, b ∈ S.
It is called the reduced semigroup C∗-algebra. The identity element in this algebra is denoted by I.

Now we recall the necessary notions concerning the crossed products of C∗-algebras by locally
compact groups [7, 8].

Let A be a C∗-algebra, G be a locally compact group and α : G −→ Aut(A) be a continuous
homomorphism of groups. The triple (A, G, α) is called a dynamical system.

A covariant representation of the dynamical system (A, G, α) is a pair (π, u) consisting of a
nondegenerate representation π : A −→ B(H) and a unitary representation u : G −→ B(H) for a
Hilbert space H such that

π(αg(a)) = u(g)π(a)u(g)∗

for all a ∈ A and g ∈ G [7, Def. 2.10].
Let Cc(G,A) be the space of finitely supported functions f : G −→ A. This space becomes the ∗-

algebra with a convolution and an involution twisted with using the homomorphism α [7, p. 48]. The
Banach algebra L1(G,A) is the completion of Cc(G,A) with respect to the L1-norm. If G is a discrete
group, then Cc(G,A) = AG is an ∗-algebra of finite linear combinations of elements of the group G with
coefficients from A.

If (π, u) is a covariant representation of (A, G, α) on H , then there exists an associated ∗-
representation π � u : Cc(G,A) −→ B(H) such that ||(π � u)f || ≤ ||f ||1, where f ∈ Cc(G,A) [7,
Prop. 2.23]. The completion of Cc(G,A) with respect to the universal norm

||f || := sup{||(π � u)f || : (π, u) is a covariant representation of (A, G, α)}
is called the (full) crossed product of A by G and denoted by A�α G [7, Lem. 2.27].

The term “crossed product” will always mean “full crossed product”.
It is worth noting that for every dynamical system (A, G, α) there exists a crossed product. Moreover,

it is unique up to an isomorphism. For proving these facts we refer the reader to [12].
Next let us define the reduced crossed product C∗-algebra [8].
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Let π : A −→ B(H) be a faithful representation. Define representations πα : A −→ B(L2(G,H))
and λ : G −→ B(L2(G,H)) as follows

(πα(a)χ)(h) = π(αh−1(a))(χ(h)), (1)

(λ(g)χ)(h) = χ(g−1h), (2)

where a ∈ A, g, h ∈ G, χ ∈ L2(G,H). Then, the pair (πα, λ) is a covariant representation of the dy-
namical system (A, G, α) on the Hilbert space L2(G,H). The reduced norm on Cc(G,A) ⊂ L1(G,A)
is given by

||f ||r := ||(πα � λ)f ||,
where f ∈ Cc(G,A). The completion of Cc(G,A) with respect to || · ||r is called the reduced crossed
product of A by G and denoted by A�α,r G.

If G is a discrete group, then L2(G,H) = l2(G,H) ∼= H ⊗ l2(G). The formulas (1) and (2) can be
rewritten as follows

πα(a)(ξ ⊗ eh) = π(αh−1(a))ξ ⊗ eh, λ(g)(ξ ⊗ eh) = ξ ⊗ egh,

where a ∈ A, g, h ∈ G, ξ ∈ H . The set of functions {eh | h ∈ G} is an orthonormal basis in the Hilbert
space l2(G). If G is a discrete group and A is a unital C∗-algebra, then one can say that the reduced
crossed product A�α,r G is generated by the set {πα(a)|a ∈ A} ∪ {λ(g)|g ∈ G}.

If G is amenable, then the reduced norm coincides with the universal norm on Cc(G,A) and we have
A�α,r G = A�α G [7, Th. 7.13].

3. THE SEMIGROUP C∗-ALGEBRA C∗
r (S �β G)

Let S be a discrete left cancellative semigroup, and G be a discrete group. Let β : G −→ Aut(S) be
a group homomorphism. Then, the semidirect product S �β G is the semigroup with the underlying set
S ×G and the semigroup operation given by

(a, g)(b, h) := (aβg(b), gh).

It is easy to see that the semigroupS �β G has the left cancellation property. Here, the object of our study
is the reduced semigroup C∗-algebra C∗

r (S �β G). Let us fix an arbitrary element s ∈ S and introduce
the notation Ug,s := T ∗

(s,e)T(s,g) and Va := T(a,e), where g ∈ G, a ∈ S and e is the unit of the group G.

We show that the action of the operator Ug,s on the space l2(S �β G) does not depend on the choice of
the element s. To do this we find out how this operator acts on basis vectors. We have

Ug,se(a,h) = T ∗
(s,e)T(s,g)e(a,h) = T ∗

(s,e)e(sβg(a),gh) = T ∗
(s,e)T(s,e)e(βg(a),gh) = e(βg(a),gh), (3)

where g, h ∈ G, a ∈ S. Thus, the action of the operator Ug,s on basis vectors has nothing to do with the
element s. So the operator Ug,s is denoted by Ug.

Lemma 1. The following properties are fulfilled:

1) The operator Ug is unitary for every g ∈ G;

2) The C∗-algebra C∗
r (S �β G) is generated by the unitary operators Ug, g ∈ G, and the

isometries Va, a ∈ S.

Proof. 1) First we calculate the values of the operator U∗
g at the basis vectors

U∗
g e(a,h) = T ∗

(s,g)T(s,e)e(a,h) = T ∗
(s,g)e(sa,h) = T ∗

(s,g)T(s,g)e(βg−1 (a),g−1h) = e(βg−1 (a),g−1h), (4)

where g, h ∈ G, a ∈ S. Next, using (3) and (4), we get

UgU
∗
g e(a,h) = Uge(βg−1 (a),g−1h) = e(a,h), U∗

gUge(a,h) = U∗
g e(βg(a),gh) = e(a,h)

for all g, h ∈ G, a ∈ S. Hence, we have U∗
gUg = UgU

∗
g = I.
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2) The statement follows from the following representation
T(a,g) = T ∗

(s,e)T(s,e)T(a,g) = T ∗
(s,e)T(sa,g) = T ∗

(s,e)T(s,g)T(βg−1 (a),e) = UgVβg−1(a),

where a ∈ S, g ∈ G. We note that using the actions of operators T(a,g), Va and Ug on the basis vectors,
it is easy to show one more equality T(a,g) = VaUg. �

Further we consider the C∗-algebra C∗
r (S). In the next lemma it will be shown that any automor-

phism of the semigroup S induces an automorphism of the semigroup C∗-algebra C∗
r (S).

Lemma 2. Let γ : S −→ S be an automorphism of the semigroup S. Then, there exists a unique
automorphism γ : C∗

r (S) −→ C∗
r (S) such that γ(Ta) = Tγ(a) whenever a ∈ S.

Proof. Consider the unitary operator U : l2(S) −→ l2(S) : eb �→ eγ(b), b ∈ S, and the isometric
∗-homomorphism γ̃ : C∗

r (S) −→ B(l2(S)) : A �−→ UAU∗, A ∈ C∗
r (S). It is easy to verify that the

equality Tγ(a) = UTaU
∗ holds for each a ∈ S. Hence, we have γ̃(Ta) = Tγ(a) whenever a ∈ S. Since

γ is an automorphism of S, the image of γ̃ contains the dense ∗-subalgebra of the C∗-algebra C∗
r (S).

Therefore the image of γ̃ is dense in C∗
r (S). Denote by γ the corestriction of γ̃ to C∗

r (S). Of course, γ is
an automorphism of the C∗-algebra C∗

r (S). The uniqueness of the required automorphism is obvious. �
Thus, if β : G −→ Aut(S) is a group homomorphism, then we have the group homomorphism

α : G −→ Aut(C∗
r (S)) such that αg(Ta) = Tβg(a) for all g ∈ G, a ∈ S. So we have the dynamical system

(C∗
r (S), G, α).
Next, let us construct the reduced crossed product C∗

r (S)�α,r G. Firstly, using the inclusion
C∗
r (S) ⊂ B(l2(S)), we define a representation π : C∗

r (S) −→ B(l2(S)⊗ l2(G)) on generators of the
C∗-algebra C∗

r (S) as follows:

π(Ta)(eb ⊗ eg) = αg−1(Ta)eb ⊗ eg = eβg−1 (a)b ⊗ eg, (5)

where a, b ∈ S, g ∈ G. Secondly, we define a regular representation λ : G −→ B(l2(S)⊗ l2(G)) by

λ(g)(eb ⊗ eh) = eb ⊗ egh, (6)

where b ∈ S, g, h ∈ G. Then, the pair (π, λ) is a covariant representation of the dynamical system
(C∗

r (S), G, α). Since the C∗-algebra C∗
r (S) is unital and the group G is discrete, the C∗-algebra

C∗
r (S)�α,r G is generated by the set {π(A)|A ∈ C∗

r (S)} ∪ {λ(g)|g ∈ G}. Therefore, because the
C∗-algebra C∗

r (S) is generated by the set of operators {Ta|a ∈ S}, one can see that the C∗-algebra
C∗
r (S)�α,r G is generated by the set {π(Ta)|a ∈ S} ∪ {λ(g)|g ∈ G}.

Theorem 1. Let S be a discrete left cancellative semigroup and G be a discrete group. Let
β : G −→ Aut(S) and α : G −→ Aut(C∗

r (S)) be group homomorphisms such that αg(Ta) = Tβg(a)

for all g ∈ G, s ∈ S. Then, there exists an isomorphism of C∗-algebras
C∗
r (S �β G) ∼= C∗

r (S)�α,r G.

Proof. Let us consider the operator U : l2(S)⊗ l2(G) −→ l2(S �β G) defined by the formula

U(ea ⊗ eg) = e(βg(a),g), (7)

where a ∈ S, g ∈ G. Obviously, U is a unitary operator.
Furthermore, we claim that the following diagrams are commutative:

l 2(S ��� G) l 2(S ��� G)

l 2(S) � l 2(G)l 2(S) � l 2(G)
�(g)

Ug

U U

for every g ∈ G, and

l 2(S ��� G) l 2(S ��� G)

l 2(S) � l 2(G)l 2(S) � l 2(G)
�(Ta)

Va

U U
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for every a ∈ S.
Indeed, using (3) and (7), we get

UgU(eb ⊗ eh) = Uge(βh(b),h) = e(βg(βh(b)),gh) = e(βgh(b),gh),

where b ∈ S, g, h ∈ G. On the other hand, by (6) and (7), we have

Uλ(g)(eb ⊗ eh) = U(eb ⊗ egh) = e(βgh(b),gh).

Thus, the commutativity of the first diagram is shown.
Consider the second diagram. On the one hand, we have

VaU(eb ⊗ eh) = T(a,e)e(βh(b),h) = e(aβh(b),h),

where a, b ∈ S, h ∈ G. On the other hand, using (5), we get

Uπ(Ta)(eb ⊗ eh) = U(eβh−1 (a)b ⊗ eh) = e(βh(βh−1 (a)b),h) = e(aβh(b),h).

The commutativity of the diagram is proved, as claimed. Therefore, the equalities

λ(g) = U∗UgU, π(Ta) = U∗VaU (8)

are true for all g ∈ G and a ∈ S respectively.
Further we define the isometric ∗-homomorphism

φ : C∗
r (S �β G) −→ B(l2(S)⊗ l2(G)) : A �−→ U∗AU,

where A ∈ C∗
r (S �β G). By (8), we have

φ(Ug) = λ(g), φ(Va) = π(Ta)

whenever g ∈ G and a ∈ S.
The image of φ is dense in the C∗-algebra C∗

r (S)�α,r G. It follows from the fact that the C∗-
algebra C∗

r (S)�α,r G is generated by the set {π(Ta)|a ∈ S} ∪ {λ(g)|g ∈ G}. Thus, the homomorphism
φ realizes the required isomorphism of C∗-algebras C∗

r (S �β G) and C∗
r (S)�α,r G. �

4. THE SEMIGROUP C∗-ALGEBRA C∗
r (Z �ϕ Z

×)

In this section we apply Theorem 1 to the study of the structure of the reduced semigroup C∗-algebra
C∗
r (Z �ϕ Z

×).
As usual, we denote by Z the additive group of all integers. Let Z× be the multiplicative semigroup

Z \ {0} and let ϕ : Z× −→ End(Z) be the semigroup homomorphism from Z
× into the semigroup of

endomorphisms of the group Z given by

ϕm(n) :=

{
n, if m > 0;

−n, if m < 0,

where m ∈ Z
×, n ∈ Z. We consider the semidirect product of Z and Z

× with respect to ϕ which is
denoted by Z �ϕ Z

×. It is a semigroup with respect to the multiplication defined by

(m,n)(k, l) = (m+ ϕn(k), nl),

where m,k ∈ Z, n, l ∈ Z×. It is straightforward to verify that Z �ϕ Z
× is a semigroup with the

cancellation property.
The reduced semigroup C∗-algebra C∗

r (Z �ϕ Z
×) of the semidirect product Z �ϕ Z

× is studied in
[9–11].

Let Z× N be the Cartesian product of the additive group of all integers and the multiplicative
semigroup of natural numbers. It is a semigroup under the multiplication (m,n)(k, l) = (m+ k, nl),
where m,k ∈ Z, n, l ∈ N.

Let Z2 := Z/2Z = {0, 1} be the cyclic group of order two. Let us define the homomorphism of groups
α : Z2 −→ Aut(C∗

r (Z× N)). We put α0 = id, and α1 is well-defined by the action on the generating
elements of the C∗-algebra C∗

r (Z× N) as follows: α1(T(m,n)) = T(−m,n) for all m ∈ Z, n ∈ N.
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The semigroup C∗-algebras C∗
r (Z�ϕ Z

×), C∗
r (Z×N) and the dynamical system (C∗

r (Z×N),Z2, α)
were considered in [10]. As a consequence of Theorem 1, we obtain the following assertion. Note that
its formulation without a proof was given in [10, Th. 2].

Proposition 1. Let α : Z2 −→ Aut(C∗
r (Z× N)) be the group homomorphism defined by

αk(T(m,n)) =

{
T(m,n), if k = 0;

T(−m,n), if k = 1,

where m ∈ Z, n ∈ N. Then, there exists an isomorphism of C∗-algebras

C∗
r (Z �ϕ Z

×) ∼= C∗
r (Z× N)�α Z2.

Proof. Define the semidirect product (Z ×N)�β Z2, where the action of the group Z2 on the
semigroup Z× N is given by the formulas β0(m,n) = (m,n) and β1(m,n) = (−m,n) for all m ∈ Z,
n ∈ N. It is easy to see we have the semigroup isomorphism

Z�ϕ Z
× ∼= (Z ×N)�β Z2 : (m,n) �→

{
((m,n), 0), if n > 0;

((m,−n), 1), if n < 0,

where m ∈ Z, n ∈ Z
×. Moreover, the homomorphisms α and β are connected with the formula

αk(T(m,n)) = Tβk(m,n), where k ∈ {0, 1}, m ∈ Z, n ∈ N. Then, using Theorem 1 and the amenability
of the group Z2, we obtain

C∗
r (Z �ϕ Z

×) ∼= C∗
r ((Z× N)�β Z2) ∼= C∗

r (Z× N)�α,r Z2 = C∗
r (Z× N)�α Z2.

�

In [11], a relation between the C∗-algebra C∗
r (Z �ϕ Z

×) and the infinite dihedral group was consid-
ered. We recall that the infinite dihedral group is the group D∞ := Z�ψ Z2, where ψ : Z2 −→ Aut(Z)
is the group homomorphism such that

ψ(0)(n) = n and ψ(1)(n) = −n

whenever n ∈ Z. It is worth noting that Theorem 3 in [11] is a corollary of Theorem 1.
Finally, using Theorem 1, we prove the following statement. To this end, we introduce some

additional notation. Let N stand for the multiplicative semigroup of natural numbers. By tr we denote
both the trivial homomorphism tr : D∞ −→ Aut(C∗

r (N)) taking each element of D∞ to the identity
automorphism of the C∗-algebra C∗

r (N) and the trivial action tr : D∞ −→ Aut(N) of the group D∞
on the semigroup N.

Proposition 2. There exists an isomorphism of C∗-algebras C∗
r (Z �ϕ Z

×) ∼= C∗
r (N)�tr D∞.

Proof. Take the Cartesian product N×D∞. Here, we treat N×D∞ as the semigroup with the
coordinatewise binary operation. Obviously, we have the equality N×D∞ = N�tr D∞.

It is straightforward to verify that we have the isomorphism of the semigroups Z �ϕ Z
× ∼= N×D∞

defined by

(m,n) �−→
{
(n, (m, 0)), if n > 0;

(−n, (m, 1)), if n < 0;

whenever m ∈ Z, n ∈ Z
×. Then, using Theorem 1 and the amenability of the group D∞ (see, for

example, [13, Section 1]), we obtain

C∗
r (Z �ϕ Z

×) ∼= C∗
r (N×D∞) ∼= C∗

r (N)�tr,r D∞ = C∗
r (N)�tr D∞,

as required. �
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