On a Semigroup C^* -Algebra for a Semidirect Product

E. V. Lipacheva^{1,2*}

(Submitted by G. G. Amosov)

¹Chair of Higher Mathematics, Kazan State Power Engineering University, Kazan, 420066 Russia ²Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, 420008 Russia

Received April 2, 2023; revised April 18, 2023; accepted May 4, 2023

Abstract—The paper deals with the reduced semigroup C^* -algebra for the semidirect product of a semigroup S by a group G. We represent this C^* -algebra as a reduced crossed product of the reduced semigroup C^* -algebra for S by G. The purpose of the paper is to demonstrate that the crossed product C^* -algebras and the semidirect products of semigroups are closely related. We prove that the action of the group G on the semigroup S can be extended from S to the reduced semigroup C^* -algebra $C^*_r(S)$. We show that the reduced semigroup C^* -algebra for a semidirect product $S \rtimes G$ is isomorphic to the reduced crossed product C^* -algebra $C^*_r(S) \rtimes_r G$. We apply this result to the study of the structure of the reduced semigroup C^* -algebra for the semidirect product $\mathbb{Z} \rtimes \mathbb{Z}^{\times}$ of the additive group \mathbb{Z} of all integers and the multiplicative semigroup \mathbb{Z}^{\times} of integers without zero.

DOI: 10.1134/S1995080223060318

Keywords and phrases: covariant representation, crossed product C^* -algebra, dynamical system, reduced crossed product C^* -algebra, reduced semigroup C^* -algebra, semidirect product of semigroups.

1. INTRODUCTION

In this paper we study the reduced semigroup C^* -algebra for a semidirect product of a semigroup S by a group G. The main purpose of our work is to represent this C^* -algebra as a reduced crossed product of the reduced semigroup C^* -algebra $C^*_r(S)$ by G.

The reduced semigroup C^* -algebras are very natural objects. They are generated by the left regular representations of semigroups with the cancellation property. The start in studying these algebras was made by Coburn [1, 2] who considered the reduced semigroup C^* -algebra for the additive semigroup of the non-negative integers. Douglas [3] investigated the case of subsemigroups in the additive group of the real numbers. Murphy [4, 5] generalized the results from [1–3] to the case of the reduced semigroup C^* -algebras for the positive cones in ordered groups. For extensive literature and history of the study of semigroup C^* -algebras, the reader is referred, for example, to [6] and the references therein.

The subject of the crossed products C^* -algebras is a well-developed branch of the theory of C^* -algebras. On the one hand, the crossed products provide interesting examples of C^* -algebras. On the other hand, the problem of representing a given C^* -algebra as a crossed product C^* -algebra attract a great deal of attention because it has important applications to a variety of questions in the theory of C^* -algebras. A systematic exposition of the crossed products is contained in the monograph [7].

There are two types of the crossed products of a C^* -algebra \mathcal{A} by a locally compact group G. Namely, these are the full and the reduced crossed products. The full crossed product $\mathcal{A} \rtimes_{\alpha} G$ should be thought as a twisted maximal tensor product of \mathcal{A} with the full group C^* -algebra $C^*(G)$ of the group G. The reduced crossed product $\mathcal{A} \rtimes_{\alpha,r} G$ should be regarded as a twisted minimal (or spacial) tensor product of \mathcal{A} by the reduced group C^* -algebra $C^*_r(G)$.

^{*}E-mail: elipacheva@gmail.com

Our research was motivated by the relationship between the crossed products of algebras by groups and the semidirect products of groups. Suppose that H and G are locally compact groups and $\beta: G \longrightarrow \operatorname{Aut}(H)$ is a homomorphism such that an action $(g, h) \mapsto \beta_g(h)$ is continuous from the direct product $G \times H$ to H. Then, the semidirect product $H \rtimes_{\beta} G$ is the locally compact group. The action β of the group G can be extended from the group H to the C^* -algebra $C^*(H)$ (or $C^*_r(H)$). Denote this action by α . Then, there are natural isomorphisms ([8], II.10.3.15)

$$C^*(H \rtimes_\beta G) \cong C^*(H) \rtimes_\alpha G$$
 and $C^*_r(H \rtimes_\beta G) \cong C^*_r(H) \rtimes_{\alpha,r} G$.

In this paper, we will obtain an analogue of the second isomorphism for the reduced semigroup C^* -algebra of a discrete semigroup. Namely, let S be a discrete left cancellative semigroup, G be a discrete group and $\beta : G \longrightarrow \operatorname{Aut}(S)$ be a group homomorphism. Then, the semidirect product $S \rtimes_{\beta} G$ is the left cancellative semigroup. In Section 2 we will see that there exists an isomorphism

$$C_r^*(S \rtimes_\beta G) \cong C_r^*(S) \rtimes_{\alpha, r} G,$$

where $\alpha : G \longrightarrow \operatorname{Aut}(C_r^*(S))$ is the group homomorphism induced by the homomorphism β . In Section 3, the above result will be applied to the reduced semigroup C^* -algebra $C_r^*(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$ which was studied in [9–11].

2. PRELIMINARIES

We begin by recalling the definition of the reduced semigroup C^* -algebra for a semigroup.

Let S be a discrete left cancellative semigroup. As usual, the symbol $l^2(S)$ stands for the Hilbert space of all square summable complex-valued functions on S. For every $a \in S$, we denote by e_a the function in $l^2(S)$ which is defined as follows: $e_a(b) = 1$, if a = b, and $e_a(b) = 0$, if $a \neq b$, where $b \in S$. Then, the set of functions $\{e_a \mid a \in S\}$ is an orthonormal basis in the Hilbert space $l^2(S)$.

In the C^* -algebra of all bounded linear operators $B(l^2(S))$ on the Hilbert space $l^2(S)$, we define the C^* -subalgebra $C_r^*(S)$ generated by the set of isometries $\{T_a \mid a \in S\}$, where $T_a(e_b) = e_{ab}$ for $a, b \in S$. It is called *the reduced semigroup* C^* -algebra. The identity element in this algebra is denoted by I.

Now we recall the necessary notions concerning the crossed products of C^* -algebras by locally compact groups [7, 8].

Let \mathcal{A} be a C^* -algebra, G be a locally compact group and $\alpha : G \longrightarrow \operatorname{Aut}(\mathcal{A})$ be a continuous homomorphism of groups. The triple (\mathcal{A}, G, α) is called *a dynamical system*.

A covariant representation of the dynamical system (\mathcal{A}, G, α) is a pair (π, u) consisting of a nondegenerate representation $\pi : \mathcal{A} \longrightarrow B(H)$ and a unitary representation $u : G \longrightarrow B(H)$ for a Hilbert space H such that

$$\pi(\alpha_q(a)) = u(g)\pi(a)u(g)^*$$

for all $a \in \mathcal{A}$ and $g \in G$ [7, Def. 2.10].

Let $C_c(G, \mathcal{A})$ be the space of finitely supported functions $f : G \longrightarrow \mathcal{A}$. This space becomes the *algebra with a convolution and an involution twisted with using the homomorphism α [7, p. 48]. The Banach algebra $L^1(G, \mathcal{A})$ is the completion of $C_c(G, \mathcal{A})$ with respect to the L^1 -norm. If G is a discrete group, then $C_c(G, \mathcal{A}) = \mathcal{A}G$ is an *-algebra of finite linear combinations of elements of the group G with coefficients from \mathcal{A} .

If (π, u) is a covariant representation of (\mathcal{A}, G, α) on H, then there exists an associated *representation $\pi \rtimes u : C_c(G, \mathcal{A}) \longrightarrow B(H)$ such that $||(\pi \rtimes u)f|| \le ||f||_1$, where $f \in C_c(G, \mathcal{A})$ [7, Prop. 2.23]. The completion of $C_c(G, \mathcal{A})$ with respect to the universal norm

$$||f|| := \sup\{||(\pi \rtimes u)f|| : (\pi, u) \text{ is a covariant representation of } (\mathcal{A}, G, \alpha)\}$$

is called *the (full) crossed product of* \mathcal{A} *by* G and denoted by $\mathcal{A} \rtimes_{\alpha} G$ [7, Lem. 2.27].

The term "crossed product" will always mean "full crossed product".

It is worth noting that for every dynamical system (\mathcal{A}, G, α) there exists a crossed product. Moreover, it is unique up to an isomorphism. For proving these facts we refer the reader to [12].

Next let us define the reduced crossed product C^* -algebra [8].

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

Let $\pi : \mathcal{A} \longrightarrow B(H)$ be a faithful representation. Define representations $\pi_{\alpha} : \mathcal{A} \longrightarrow B(L^2(G, H))$ and $\lambda : G \longrightarrow B(L^2(G, H))$ as follows

$$(\pi_{\alpha}(a)\chi)(h) = \pi(\alpha_{h^{-1}}(a))(\chi(h)), \tag{1}$$

$$(\lambda(g)\chi)(h) = \chi(g^{-1}h), \tag{2}$$

where $a \in \mathcal{A}$, $g, h \in G$, $\chi \in L^2(G, H)$. Then, the pair (π_α, λ) is a covariant representation of the dynamical system (\mathcal{A}, G, α) on the Hilbert space $L^2(G, H)$. The *reduced norm* on $C_c(G, \mathcal{A}) \subset L^1(G, \mathcal{A})$ is given by

$$||f||_r := ||(\pi_\alpha \rtimes \lambda)f||,$$

where $f \in C_c(G, \mathcal{A})$. The completion of $C_c(G, \mathcal{A})$ with respect to $|| \cdot ||_r$ is called *the reduced crossed* product of \mathcal{A} by G and denoted by $\mathcal{A} \rtimes_{\alpha, r} G$.

If G is a discrete group, then $L^2(G, H) = l^2(G, H) \cong H \otimes l^2(G)$. The formulas (1) and (2) can be rewritten as follows

$$\pi_{\alpha}(a)(\xi \otimes e_h) = \pi(\alpha_{h^{-1}}(a))\xi \otimes e_h, \quad \lambda(g)(\xi \otimes e_h) = \xi \otimes e_{gh},$$

where $a \in \mathcal{A}$, $g, h \in G$, $\xi \in H$. The set of functions $\{e_h \mid h \in G\}$ is an orthonormal basis in the Hilbert space $l^2(G)$. If G is a discrete group and \mathcal{A} is a unital C^* -algebra, then one can say that the reduced crossed product $\mathcal{A} \rtimes_{\alpha,r} G$ is generated by the set $\{\pi_\alpha(a) \mid a \in \mathcal{A}\} \cup \{\lambda(g) \mid g \in G\}$.

If G is amenable, then the reduced norm coincides with the universal norm on $C_c(G, \mathcal{A})$ and we have $\mathcal{A} \rtimes_{\alpha,r} G = \mathcal{A} \rtimes_{\alpha} G$ [7, Th. 7.13].

3. THE SEMIGROUP C*-ALGEBRA $C_r^*(S \rtimes_\beta G)$

Let *S* be a discrete left cancellative semigroup, and *G* be a discrete group. Let $\beta : G \longrightarrow \operatorname{Aut}(S)$ be a group homomorphism. Then, the semidirect product $S \rtimes_{\beta} G$ is the semigroup with the underlying set $S \times G$ and the semigroup operation given by

$$(a,g)(b,h) := (a\beta_g(b),gh).$$

It is easy to see that the semigroup $S \rtimes_{\beta} G$ has the left cancellation property. Here, the object of our study is the reduced semigroup C^* -algebra $C_r^*(S \rtimes_{\beta} G)$. Let us fix an arbitrary element $s \in S$ and introduce the notation $U_{g,s} := T_{(s,e)}^* T_{(s,g)}$ and $V_a := T_{(a,e)}$, where $g \in G$, $a \in S$ and e is the unit of the group G. We show that the action of the operator $U_{g,s}$ on the space $l^2(S \rtimes_{\beta} G)$ does not depend on the choice of the element s. To do this we find out how this operator acts on basis vectors. We have

$$U_{g,s}e_{(a,h)} = T^*_{(s,e)}T_{(s,g)}e_{(a,h)} = T^*_{(s,e)}e_{(s\beta_g(a),gh)} = T^*_{(s,e)}T_{(s,e)}e_{(\beta_g(a),gh)} = e_{(\beta_g(a),gh)},$$
(3)

where $g, h \in G$, $a \in S$. Thus, the action of the operator $U_{g,s}$ on basis vectors has nothing to do with the element s. So the operator $U_{g,s}$ is denoted by U_g .

Lemma 1. The following properties are fulfilled:

- 1) The operator U_q is unitary for every $g \in G$;
- 2) The C*-algebra $C_r^*(S \rtimes_\beta G)$ is generated by the unitary operators U_g , $g \in G$, and the isometries $V_a, a \in S$.

Proof. 1) First we calculate the values of the operator U_g^* at the basis vectors

$$U_{g}^{*}e_{(a,h)} = T_{(s,g)}^{*}T_{(s,e)}e_{(a,h)} = T_{(s,g)}^{*}e_{(sa,h)} = T_{(s,g)}^{*}T_{(s,g)}e_{(\beta_{g^{-1}}(a),g^{-1}h)} = e_{(\beta_{g^{-1}}(a),g^{-1}h)}, \quad (4)$$

where $g, h \in G, a \in S$. Next, using (3) and (4), we get

$$U_g U_g^* e_{(a,h)} = U_g e_{(\beta_{g^{-1}}(a), g^{-1}h)} = e_{(a,h)}, \quad U_g^* U_g e_{(a,h)} = U_g^* e_{(\beta_g(a), gh)} = e_{(a,h)}$$

for all $g, h \in G, a \in S$. Hence, we have $U_a^* U_g = U_g U_g^* = I$.

2) The statement follows from the following representation

$$T_{(a,g)} = T^*_{(s,e)}T_{(s,e)}T_{(a,g)} = T^*_{(s,e)}T_{(sa,g)} = T^*_{(s,e)}T_{(s,g)}T_{(\beta_{g^{-1}}(a),e)} = U_g V_{\beta_{g^{-1}}(a)},$$

where $a \in S$, $g \in G$. We note that using the actions of operators $T_{(a,g)}$, V_a and U_g on the basis vectors, it is easy to show one more equality $T_{(a,g)} = V_a U_g$.

Further we consider the C^* -algebra $C^*_r(S)$. In the next lemma it will be shown that any automorphism of the semigroup S induces an automorphism of the semigroup C^* -algebra $C^*_r(S)$.

Lemma 2. Let $\gamma : S \longrightarrow S$ be an automorphism of the semigroup S. Then, there exists a unique automorphism $\overline{\gamma} : C_r^*(S) \longrightarrow C_r^*(S)$ such that $\overline{\gamma}(T_a) = T_{\gamma(a)}$ whenever $a \in S$.

Proof. Consider the unitary operator $U: l^2(S) \longrightarrow l^2(S): e_b \mapsto e_{\gamma(b)}, b \in S$, and the isometric *-homomorphism $\tilde{\gamma}: C_r^*(S) \longrightarrow B(l^2(S)): A \longmapsto UAU^*, A \in C_r^*(S)$. It is easy to verify that the equality $T_{\gamma(a)} = UT_aU^*$ holds for each $a \in S$. Hence, we have $\tilde{\gamma}(T_a) = T_{\gamma(a)}$ whenever $a \in S$. Since γ is an automorphism of S, the image of $\tilde{\gamma}$ contains the dense *-subalgebra of the C^* -algebra $C_r^*(S)$. Therefore the image of $\tilde{\gamma}$ is dense in $C_r^*(S)$. Denote by $\overline{\gamma}$ the corestriction of $\tilde{\gamma}$ to $C_r^*(S)$. Of course, $\overline{\gamma}$ is an automorphism of the C^* -algebra $C_r^*(S)$. The uniqueness of the required automorphism is obvious. \Box

Thus, if $\beta: G \longrightarrow \operatorname{Aut}(S)$ is a group homomorphism, then we have the group homomorphism $\alpha: G \longrightarrow \operatorname{Aut}(C_r^*(S))$ such that $\alpha_g(T_a) = T_{\beta_g(a)}$ for all $g \in G, a \in S$. So we have the dynamical system $(C_r^*(S), G, \alpha)$.

Next, let us construct the reduced crossed product $C_r^*(S) \rtimes_{\alpha,r} G$. Firstly, using the inclusion $C_r^*(S) \subset B(l^2(S))$, we define a representation $\pi : C_r^*(S) \longrightarrow B(l^2(S) \otimes l^2(G))$ on generators of the C^* -algebra $C_r^*(S)$ as follows:

$$\pi(T_a)(e_b \otimes e_g) = \alpha_{g^{-1}}(T_a)e_b \otimes e_g = e_{\beta_{a^{-1}}(a)b} \otimes e_g, \tag{5}$$

where $a, b \in S, g \in G$. Secondly, we define a regular representation $\lambda : G \longrightarrow B(l^2(S) \otimes l^2(G))$ by

$$\lambda(g)(e_b \otimes e_h) = e_b \otimes e_{gh},\tag{6}$$

where $b \in S$, $g, h \in G$. Then, the pair (π, λ) is a covariant representation of the dynamical system $(C_r^*(S), G, \alpha)$. Since the C^* -algebra $C_r^*(S)$ is unital and the group G is discrete, the C^* -algebra $C_r^*(S) \rtimes_{\alpha,r} G$ is generated by the set $\{\pi(A) | A \in C_r^*(S)\} \cup \{\lambda(g) | g \in G\}$. Therefore, because the C^* -algebra $C_r^*(S)$ is generated by the set of operators $\{T_a | a \in S\}$, one can see that the C^* -algebra $C_r^*(S) \rtimes_{\alpha,r} G$ is generated by the set $\{\pi(T_a) | a \in S\} \cup \{\lambda(g) | g \in G\}$.

Theorem 1. Let S be a discrete left cancellative semigroup and G be a discrete group. Let $\beta: G \longrightarrow Aut(S)$ and $\alpha: G \longrightarrow Aut(C_r^*(S))$ be group homomorphisms such that $\alpha_g(T_a) = T_{\beta_g(a)}$ for all $g \in G$, $s \in S$. Then, there exists an isomorphism of C^* -algebras

$$C_r^*(S \rtimes_\beta G) \cong C_r^*(S) \rtimes_{\alpha, r} G.$$

Proof. Let us consider the operator $U: l^2(S) \otimes l^2(G) \longrightarrow l^2(S \rtimes_\beta G)$ defined by the formula

$$U(e_a \otimes e_g) = e_{(\beta_g(a),g)},\tag{7}$$

where $a \in S, g \in G$. Obviously, U is a unitary operator.

Furthermore, we claim that the following diagrams are commutative:

$$\begin{array}{c|c} l^{2}(S) \otimes l^{2}(G) & \xrightarrow{\lambda(g)} & l^{2}(S) \otimes l^{2}(G) \\ U & & \downarrow U \\ l^{2}(S \rtimes_{\beta} G) & \underbrace{U_{g}} & l^{2}(S \rtimes_{\beta} G) \end{array}$$

for every $g \in G$, and

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

for every $a \in S$.

Indeed, using (3) and (7), we get

$$U_g U(e_b \otimes e_h) = U_g e_{(\beta_h(b),h)} = e_{(\beta_g(\beta_h(b)),gh)} = e_{(\beta_{gh}(b),gh)},$$

where $b \in S$, $g, h \in G$. On the other hand, by (6) and (7), we have

 $U\lambda(g)(e_b \otimes e_h) = U(e_b \otimes e_{gh}) = e_{(\beta_{gh}(b),gh)}.$

Thus, the commutativity of the first diagram is shown.

Consider the second diagram. On the one hand, we have

$$V_a U(e_b \otimes e_h) = T_{(a,e)} e_{(\beta_h(b),h)} = e_{(a\beta_h(b),h)},$$

where $a, b \in S, h \in G$. On the other hand, using (5), we get

$$U\pi(T_a)(e_b \otimes e_h) = U(e_{\beta_{h-1}(a)b} \otimes e_h) = e_{(\beta_h(\beta_{h-1}(a)b),h)} = e_{(a\beta_h(b),h)}.$$

The commutativity of the diagram is proved, as claimed. Therefore, the equalities

$$\lambda(g) = U^* U_g U, \quad \pi(T_a) = U^* V_a U \tag{8}$$

are true for all $g \in G$ and $a \in S$ respectively.

Further we define the isometric *-homomorphism

$$\phi: C_r^*(S \rtimes_\beta G) \longrightarrow B(l^2(S) \otimes l^2(G)): A \longmapsto U^*AU,$$

where $A \in C_r^*(S \rtimes_\beta G)$. By (8), we have

$$\phi(U_g) = \lambda(g), \quad \phi(V_a) = \pi(T_a)$$

whenever $g \in G$ and $a \in S$.

The image of ϕ is dense in the C^* -algebra $C^*_r(S) \rtimes_{\alpha,r} G$. It follows from the fact that the C^* -algebra $C^*_r(S) \rtimes_{\alpha,r} G$ is generated by the set $\{\pi(T_a) | a \in S\} \cup \{\lambda(g) | g \in G\}$. Thus, the homomorphism ϕ realizes the required isomorphism of C^* -algebras $C^*_r(S \rtimes_{\beta} G)$ and $C^*_r(S) \rtimes_{\alpha,r} G$. \Box

4. THE SEMIGROUP C*-ALGEBRA $C_r^*(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$

In this section we apply Theorem 1 to the study of the structure of the reduced semigroup C^* -algebra $C^*_r(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$.

As usual, we denote by \mathbb{Z} the additive group of all integers. Let \mathbb{Z}^{\times} be the multiplicative semigroup $\mathbb{Z} \setminus \{0\}$ and let $\varphi : \mathbb{Z}^{\times} \longrightarrow \text{End}(\mathbb{Z})$ be the semigroup homomorphism from \mathbb{Z}^{\times} into the semigroup of endomorphisms of the group \mathbb{Z} given by

$$\varphi_m(n) := \begin{cases} n, & \text{if } m > 0; \\ -n, & \text{if } m < 0, \end{cases}$$

where $m \in \mathbb{Z}^{\times}$, $n \in \mathbb{Z}$. We consider the semidirect product of \mathbb{Z} and \mathbb{Z}^{\times} with respect to φ which is denoted by $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$. It is a semigroup with respect to the multiplication defined by

$$(m,n)(k,l) = (m + \varphi_n(k), nl),$$

where $m, k \in \mathbb{Z}$, $n, l \in \mathbb{Z}^{\times}$. It is straightforward to verify that $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$ is a semigroup with the cancellation property.

The reduced semigroup C^* -algebra $C^*_r(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$ of the semidirect product $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}$ is studied in [9–11].

Let $\mathbb{Z} \times \mathbb{N}$ be the Cartesian product of the additive group of all integers and the multiplicative semigroup of natural numbers. It is a semigroup under the multiplication (m, n)(k, l) = (m + k, nl), where $m, k \in \mathbb{Z}$, $n, l \in \mathbb{N}$.

Let $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ be the cyclic group of order two. Let us define the homomorphism of groups $\alpha : \mathbb{Z}_2 \longrightarrow \operatorname{Aut}(C_r^*(\mathbb{Z} \times \mathbb{N}))$. We put $\alpha_0 = id$, and α_1 is well-defined by the action on the generating elements of the C^* -algebra $C_r^*(\mathbb{Z} \times \mathbb{N})$ as follows: $\alpha_1(T_{(m,n)}) = T_{(-m,n)}$ for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$.

The semigroup C^* -algebras $C_r^*(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$, $C_r^*(\mathbb{Z} \times \mathbb{N})$ and the dynamical system $(C_r^*(\mathbb{Z} \times \mathbb{N}), \mathbb{Z}_2, \alpha)$ were considered in [10]. As a consequence of Theorem 1, we obtain the following assertion. Note that its formulation without a proof was given in [10, Th. 2].

Proposition 1. Let $\alpha : \mathbb{Z}_2 \longrightarrow Aut(C_r^*(\mathbb{Z} \times \mathbb{N}))$ be the group homomorphism defined by

$$\alpha_k(T_{(m,n)}) = \begin{cases} T_{(m,n)}, & \text{if } k = 0; \\ T_{(-m,n)}, & \text{if } k = 1, \end{cases}$$

where $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Then, there exists an isomorphism of C^* -algebras

$$C_r^*(\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times})\cong C_r^*(\mathbb{Z}\times\mathbb{N})\rtimes_{\alpha}\mathbb{Z}_2.$$

Proof. Define the semidirect product $(\mathbb{Z} \times \mathbb{N}) \rtimes_{\beta} \mathbb{Z}_2$, where the action of the group \mathbb{Z}_2 on the semigroup $\mathbb{Z} \times \mathbb{N}$ is given by the formulas $\beta_0(m, n) = (m, n)$ and $\beta_1(m, n) = (-m, n)$ for all $m \in \mathbb{Z}$, $n \in \mathbb{N}$. It is easy to see we have the semigroup isomorphism

$$\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times} \cong (\mathbb{Z}\times\mathbb{N})\rtimes_{\beta}\mathbb{Z}_{2}: (m,n)\mapsto \begin{cases} ((m,n),0), & \text{if } n>0;\\ ((m,-n),1), & \text{if } n<0, \end{cases}$$

where $m \in \mathbb{Z}$, $n \in \mathbb{Z}^{\times}$. Moreover, the homomorphisms α and β are connected with the formula $\alpha_k(T_{(m,n)}) = T_{\beta_k(m,n)}$, where $k \in \{0,1\}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Then, using Theorem 1 and the amenability of the group \mathbb{Z}_2 , we obtain

$$C_r^*(\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times})\cong C_r^*((\mathbb{Z}\times\mathbb{N})\rtimes_{\beta}\mathbb{Z}_2)\cong C_r^*(\mathbb{Z}\times\mathbb{N})\rtimes_{\alpha,r}\mathbb{Z}_2=C_r^*(\mathbb{Z}\times\mathbb{N})\rtimes_{\alpha}\mathbb{Z}_2.$$

In [11], a relation between the C^* -algebra $C^*_r(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times})$ and the infinite dihedral group was considered. We recall that the infinite dihedral group is the group $D_{\infty} := \mathbb{Z} \rtimes_{\psi} \mathbb{Z}_2$, where $\psi : \mathbb{Z}_2 \longrightarrow \operatorname{Aut}(\mathbb{Z})$ is the group homomorphism such that

$$\psi(0)(n) = n$$
 and $\psi(1)(n) = -n$

whenever $n \in \mathbb{Z}$. It is worth noting that Theorem 3 in [11] is a corollary of Theorem 1.

Finally, using Theorem 1, we prove the following statement. To this end, we introduce some additional notation. Let \mathbb{N} stand for the multiplicative semigroup of natural numbers. By tr we denote both the trivial homomorphism tr : $D_{\infty} \longrightarrow \operatorname{Aut}(C_r^*(\mathbb{N}))$ taking each element of D_{∞} to the identity automorphism of the C^* -algebra $C_r^*(\mathbb{N})$ and the trivial action tr : $D_{\infty} \longrightarrow \operatorname{Aut}(\mathbb{N})$ of the group D_{∞} on the semigroup \mathbb{N} .

Proposition 2. There exists an isomorphism of C^* -algebras $C^*_r(\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times}) \cong C^*_r(\mathbb{N}) \rtimes_{\mathrm{tr}} D_{\infty}$.

Proof. Take the Cartesian product $\mathbb{N} \times D_{\infty}$. Here, we treat $\mathbb{N} \times D_{\infty}$ as the semigroup with the coordinatewise binary operation. Obviously, we have the equality $\mathbb{N} \times D_{\infty} = \mathbb{N} \rtimes_{\mathrm{tr}} D_{\infty}$.

It is straightforward to verify that we have the isomorphism of the semigroups $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}^{\times} \cong \mathbb{N} \times D_{\infty}$ defined by

$$(m,n)\longmapsto \begin{cases} (n,(m,0)), & \text{if } n>0; \\ (-n,(m,1)), & \text{if } n<0; \end{cases}$$

whenever $m \in \mathbb{Z}$, $n \in \mathbb{Z}^{\times}$. Then, using Theorem 1 and the amenability of the group D_{∞} (see, for example, [13, Section 1]), we obtain

$$C_r^*(\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times})\cong C_r^*(\mathbb{N}\times D_{\infty})\cong C_r^*(\mathbb{N})\rtimes_{\mathrm{tr},r} D_{\infty}=C_r^*(\mathbb{N})\rtimes_{\mathrm{tr}} D_{\infty},$$

as required.

FUNDING

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ("PRIORITY-2030").

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 6 2023

LIPACHEVA

REFERENCES

- 1. L. A. Coburn, "The C*-algebra generated by an isometry," Bull. Am. Math. Soc. 73, 722–726 (1967).
- L. A. Coburn, "The C*-algebra generated by an isometry. II," Trans. Am. Math. Soc. 137, 211–217 (1969).
 R. G. Douglas, "On the C*-algebra of a one-parameter semigroup of isometries," Acta Math. 128, 143–152 (1972).
- 4. G. J. Murphy, "Ordered groups and Toeplitz algebras," J. Oper. Theory 18, 303–326 (1987).
- 5. G. J. Murphy, "Toeplitz operators and algebras," Math. Z. 208, 355-362 (1991).
- 6. X. Li, "Semigroup C*-algebras," in Operator Algebras and Applications, Proceedings of the 12th Abel Sumposium 2015, Ed. by T. M. Carlsen, N. S. Larsen, S. Neshvevev, and C. Skau (Springer, Cham, 2016), pp. 191-202.
- 7. D. P. Williams, Crossed Products of C*-Algebras, Vol. 134 of Math. Surv. and Monographs (Am. Math. Soc., Providence, RI, 2007).
- 8. B. Blackadar, Operator Algebras. Theory of C^* -Algebras and von Neumann Algebras, Vol. 122 of Math. Sci. (Springer, Berlin, 2006).
- 9. E. V. Lipacheva, "Extensions of semigroups by the dihedral groups and semigroup C^* -algebras," J. Algebra Appl. (2022). https://doi.org/10.1142/S0219498824500221
- 10. E. V. Lipacheva, "On the representation of semigroup C^* -algebra as a crossed product," Russ. Math. 66 (8), 71-75 (2022).
- 11. R. N. Gumerov and E. V. Lipacheva, "A semigroup C^* -algebra related to the infinite dihedral group," Lobachevskii J. Math. 44 (4), 1332–1340 (2023).
- 12. I. Raeburn, "On crossed products and Takai duality," Proc. Edinburgh Math. Soc. 31, 321–330 (1988).
- 13. R. Grigorchuk and R. Yang, "Joint spectrum and the infinite dihedral group," Proc. Steklov Inst. Math. 297, 145-178 (2017).