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Abstract—In this paper, we consider an extension of the previously proposed algebraic model and
study the constraints of non-Abelian superselection rules on the transfer quantum information,
taking into account conjugate endomorphism. The procedure of averaging (over the group G =
SU(3)) projectors to the basic states of coherent orthogonal subspaces into which the space of
two three-level systems decomposes is considered. Main attention is paid to the superselection
structure of the algebra of observables 0OG defined by the Cuntz algebra 0Od=3 (field algebra)
containing 0OG as a pointwise fixed subalgebra with respect to the action of the gauge group G.
As an application of the model, we consider the encoding of information using a three-level system
and show that information can be transmitted only by those states whose projectors belong to the
algebra of observables. These projectors commute with the elements of the representation of the
group G, and therefore, allow the recipient to restore the obtained information.
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1. INTRODUCTION

Over the past 25–30 years, quantum theory has developed so rapidly and successfully that whole
concepts have emerged that can be called quantum technologies and quantum engineering. For
example, quantum sensing is developing rapidly [1], the properties of charge and spin qubits based
on semiconductor quantum dots are being intensively studied [2], multi-qubit (50–100) processors
for quantum computers have been created and in this regard, there has been a rise of interest in
superconducting qubits [3, 4], research on the transmission of quantum information and quantum
cryptography, etc., is being conducted on a broad front. Such success also initiated the formulation
of a number of original experiments to answer a number of fundamental questions together with
rapid progress in experimental technology. In particular, the experimental possibility of obtaining and
controlling individual quantum mechanical states now allows us to rethink some well-known positions
of quantum mechanics. Therefore, since the end of the 90s of the last century many purely academic
issues began to be discussed at a serious level and new questions began to be raised about the nature of
decoherence, quantum entanglement and quantum measurements of — phenomena that form the basis
of quantum technologies. However, despite some successes achieved in this area, there remain a number
of problems that require, along with a detailed analysis of experimental data, also the development of a
theoretical framework based on general physical principles, taking into account the fundamental laws of
nature.
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ALGEBRAIC MODEL OF NON-ABELIAN SUPERSELECTION 475

One of such fundamental laws of the quantum world is the dynamical superselection rules generated
by internal symmetries and associated with absolutely conserved Abelian or non-Abelian charges. For
example, in some aspects their role in the theory of quantum entanglement is studied in [5–7], and in
the theory of transmission and security of quantum information — in [8–12]. Note that in [11, 12] much
attention is paid to the non-Abelian dynamical superselection rules.

The internal symmetries generating the dynamical superselection rules are described using compact
topological groups G, which in elementary particle physics correspond to groups of global gauge
transformations. In [13], we proposed an algebraic model to study the role of non-Abelian superselection
rules in the theory of quantum information transmission, which allowed us to show that information
can be encoded only with the help of those states to which projectors commute with the algebra
of observables. The model was based on an abstract symmetric tensor C∗-category (isomorphic to
category of finite-dimensional Hilbert spaces), which, according to the Doplicher–Roberts duality, is
a dual object to the compact group G. Objects of this category are endomorphisms of C∗-algebra of
observables A, and morphisms (arrows) are the intertwining operators between them. From a physical
point of view, they can be called non-Abelian charges (see paragraphs 2.2 and 3.1). However, non-
Abelian conjugate charges were not considered in this model. Although the need to take into account
such conjugate charges within the framework of the quantum theory of information transfer has already
been expressed in [11], however, their detailed study (for the non-Abelian case) is not yet available. It
would also be interesting to identify their role in other mentioned fundamental phenomena. For example,
it is relevant to study the appearance of a mutual geometric (topological) phase when considering the
evolution of an entangled state [14], and some aspects of the Abelian charge superselection rules when
studying geometric phases are considered, for example, in [15]. Also in [16], the appearance of sectors
having a topological nature was studied in the study of the topological phase in a nucleon system.

In [17] we constructed a model of a symmetric tensor C∗-category with conjugation at the dimension
of the object d = 3 and proved that the constructed conjugate object satisfies the conjugation equations.
The purpose of this work is to generalize the model proposed in [13] using this conjugate object.
Therefore, the model allows us to simultaneously investigate the superselection rules generated by
conjugate non-Abelian charges.

In accordance with this, the work is structured as follows. Section 2 is preliminary in nature, where
we provide the information necessary for further presentation. The third section is original, and here
we consider the scheme of averaging over a group of SU(3) projectors into the basic states of the
spaces H̄3 and H6, into which the state space of two three-level systems is decomposed. Here we also
study the algebra of observables of this system and the statistics of the corresponding sectors. As an
illustration, we apply the results to the process of transmitting quantum information using a three-level
system. In conclusion, brief conclusions are made. In order to ensure the greatest independence from
the cited sources on the theory of C∗-categories and related issues, we provide information about tensor
symmetric C∗-categories in the appendix.

2. ALGEBRAIC MODEL

2.1. Background

One of the mathematically rigorous ways of describing quantum physical systems is based on the
analysis of the quasi-local C∗-algebra of observables A [18–20]. As it was shown in [21, 22], the algebra
of such observables can be embedded in a consistent way into another, extended algebra obtained on the
basis of the crossed product technique A× T , where T is an abstract symmetric tensor C∗-category
closed with respect to direct sums and subobjects. In the literature, such a category is called the
Doplicher–Roberts category and its exhaustive description is made in [23] (see also the Appendix). The
specified crossed product corresponds to the field C∗-algebra F = A× T , where as the automorphism
group aut(F) is a compact group G, and F contains the C∗-algebra A as its pointwise fixed subalgebra
with respect to the action of this group [22]. The physical meaning of the group G corresponds to the
group of global gauge transformations.

In [23] it is shown that the category T can be embedded T ⊂ end(A) as a complete subcategory
in the category of endomorphisms of C∗-algebra A. If we restrict ourselves to the subcategory Tρ ⊂ T
generated by tensor powers of one endomorphism ρ, then, as shown in [21], A× Tρ is a field algebra
whose subalgebra is the Cuntz C∗-algebra [24]. The automorphism group of the Cuntz algebra is
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476 NIKITIN, SITDIKOV

the compact Lie group. The Cuntz algebra Od is generated by isometric operators ψi (i = 1, 2, ..., d)
satisfying the relations

ψ∗
i ψj = δijI (1)

and
d∑

i

ψiψ
∗
i = I, (2)

where I is the unit of the Cuntz algebra (note that ψ∗
i are not isometries). The linear span of these

isometries forms the so-called canonical Hilbert space H = Lin{ψi}di=1[25]. In this case, the isometries
are given an orthonormal basis {ψi}i=1,2,...,d, and the scalar product in such a complex Hilbert space is
given by the relation

ψ∗ψ′ = 〈ψ,ψ′〉I, ψ, ψ′ ∈ H. (3)

Therefore, Hilbert subspaces can be considered in the Cuntz algebra, and their tensor product
H⊗ ...⊗H︸ ︷︷ ︸

r

= Hr can be identified with the elementwise product of these subspaces in the Cuntz

algebra. Since the operators Hs → Hr ≡ (Hs,Hr) between tensor degrees are given using linear maps
of the form

t = ψi1 ...ψirψ
∗
js ...ψ

∗
j1 ∈ (Hs,Hr), (4)

which form a complex Banach space, then it is possible to define a certain ∗-algebra 0Od as a direct sum
of 0Od = ⊕0

kOk
d of inductive limits

(Hr,Hr+k) −→⊗1 (Hr+1,Hr+1+k) −→⊗1 ... −→⊗1 (Hr+n,Hr+n+k) −→⊗1 .... (5)

Here 0Ok
d is the Banach space, which is the inductive limit (5) of Banach spaces with fixed values k ∈ Z.

From (4) and (5) we see that the mappings t → t⊗ 1 are injective. Completion of this algebra by a
unique C∗-norm leads to the Cuntz algebra Od [25].

In this case, G-invariant operators (Hr,Hs)G generate an algebra of observables, i.e., a pointwise
fixed subalgebra OG of the Cuntz algebra. Also note that, in general, OG ⊆ A.

As it was shown in [21, 25], the generators of the algebra OG for an arbitrary d are operators of the
form

ϑ(pn) =
∑

i1i2...in

ψi1 ...ψinψ
∗
ip(n)

...ψ∗
ip(1)

, (6)

where pn ∈ Pn and

S =
1√
d!

∑

p∈Pd

sign(p)ψp(1)...ψp(d). (7)

Here Pn is a symmetric group, Pd ⊂ Pn.

2.2. The Structure of Superselection Sectors

In quantum systems, in the presence of an absolutely conserved quantity, the superselection rules
apply, prohibiting any transitions between states with different values of the eigenvalues of the super-
selection operator S. Therefore, in these systems, the state space H is represented as a direct sum
of H = ⊕Hi orthogonal subspaces Hi, called coherent superselection sectors [20]. At the same time,
as noted, transitions between different orthogonal subspaces under the action of observable operators
are forbidden, and superpositions of vectors from various such subspaces form mixed states. The
superselection operator can be represented as

S = ΣμiΠi, (8)

where Πi are projectors to coherent subspaces Hi, and μi are some real numbers [20]. The operator (8)
belongs to the center of the algebra of observables Z(A). If the algebra of observables of physical system
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is defined using an abstract C∗-algebra A, then the representations of this algebra π(A) in subspaces
Hi are factorial of type I and pairwise disjunct [26].

However, at the same time, the connection of the superselection structure (the set of superselection
sectors) of the algebra of observables A with the field algebra F remained unclear. The decisive role in
establishing this connection was played by the works [27, 28], where the theory of superselection sectors
was formulated, based on criteria for distinguishing a class of physically acceptable representations of
the quasilocal algebra of observables A (the so-called Doplicher — Haag — Roberts selection criterion,
or, in short, the DHR criterion)1). Relying on powerful category-theoretic methods, this formulation
allowed the authors to further prove the existence of a compact group of internal symmetries G (gauge
group). More specifically, in the algebra F there are G-invariant Hilbert spaces H ⊂ F for which
g(H) = H, g ∈ G. Such Hilbert spaces, where unitary irreducible representations of the group G are
realized, form the category of representations ofRep(G) and correspond to superselection sectors. With
each such Hilbert space an internal endomorphism ρH of the algebra F

ρH(F ) =

d=dim(H)∑

i=1

ψiFψ∗
i , F ∈ F.

is associated.
The narrowing of this endomorphism into the algebra A is called canonical, which, if necessary, in

the future we will simply call the endomorphism of the algebra A and we will denote by the letter ρ,
and ρ(a) =

∑
i ψiaψ

∗
i , a ∈ A. These endomorphisms form a symmetric tensor C∗-category and in the

case of tensor powers of one endomorphim we have Tρ ⊂ end(A). Each such endomorphism can be
associated with the Hilbert space ρ → Hρ = {ψ ∈ F|ψa = ρ(a)ψ, a ∈ A} in algebra A. Since Hρ has
unitary representations of ug of the group G, the relation ug(g)ψ = ψ′ is valid, where ψ,ψ′ ∈ Hρ.

In [17] we showed that in Tρ for d = 3 and a given ρ there exists a conjugate object ρ̄(a) =∑3
i=1 ψ̂iaψ̂

∗
i and morphisms r =

∑3
i=1 ψ̂iψi ∈ (ι, ρ̄ρ) and r̄ =

∑3
i=1 ψiψ̂i ∈ (ι, ρρ̄) satisfying conju-

gation equations, so that the category Tρ is a category with conjugation. Here ψ̂i are defined by
expressions (17). We will take into account such a conjugate endomorphism in the future.

If the algebra A has a trivial center Z(A) = CI, then the category Rep(G) can be embedded
as a complete subcategory in the category end(A). At the same time, as it was shown in [22],
those representations that satisfy the DHR criterion form a symmetric tensor C∗-category rep(A),
isomorphic to Rep(G). The algebras of observables that satisfy the basic physical assumptions
(axioms) [19, 20], have a trivial center. Therefore, the pair (A,T ) corresponds to the superselection
structure of the algebra A and mathematically generalizes in an abstract sense the concrete Tannaka–
Krein duality (where the dual object of a compact group G is the category of its representations
Rep(G)). This generalization called the Doplicher–Roberts duality.

3. MODEL OF A THREE-LEVEL SYSTEM
3.1. Superselection Sectors of the Three-Level System

In the case of r particles with non-Abelian charges, superselection sectors are identified with
orthogonal coherent subspaces of decomposition into the direct sum of the tensor product Hr (where by
H we will further mean Hρ). Representation of πr, which acts in Hr, is also reducible and decomposes
into a direct sum of irreducible representations (superselection sectors) acting on proper coherent
subspaces.

In the case of a three-level system (qutrit), the state space is a three-dimensional Hilbert space H
(where d = 3) formed by a linear span H = Lin{ψi}3i=1 of the multiplet ψ1, ψ2, ψ3. This multiplet forms
an orthonormal basis in the space H, where the fundamental representation π of the group SU(3) is
realized. The scalar product is defined by (3).

Multiplet {ψi}3i=1 generates ∗-algebra 0O3, completion which by C∗-norm forms the Cuntz algebra
O3. Its subalgebra OG=SU(3), which is pointwise fixed with respect to the action of the group SU(3), is
associated with the algebra of observables. OSU(d) is generated as C∗-algebra by (6) and (7).

1)Here and in the future we will use the notation of clause 2.1 without corresponding references.
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478 NIKITIN, SITDIKOV

3.2. The Haar Measure of the SU(3) Group

In Section 2, the importance of compact groups in duality theory was noted and it was also mentioned
there that in the future the object of our attention will be the category Tρ generated by one endomorphism
of dimension d. Such a category is isomorphic to the category Rep(G) for some compact Lie group
G (see Theorem 4.5 in monograph [19]). This group also plays a major role in the study of the
superselection structure of the C∗-algebra 0OG. Since our further presentation is also related to Lie
groups (in particular, we will average (over a group of SU(3)) projectors on the basis states of coherent
orthogonal subspaces of three-level systems), in order to facilitate the reading of the article, we will send
preliminary information in a concise form without strict mathematical definitions. For more detailed
information, you can refer, for example, to the classical literature [29–31].

Lie groups are isomorphic to linear groups of non-degenerate matrices of a given dimension that are
subgroups of the group GL(n) over the field of real R or complex C numbers.

In the future we will focus on compact connected Lie groups, i.e., when the range of variation of their
parameters is limited and includes all their limit values (compactness) and any closed path in G can be
pulled to a point (simply connected)2). If any two elements of a group can be translated into each other
by continuously changing parameters, then such a group is not connected. In the case of connected
Lie groups, almost all information about the group is contained in the tangent space to the mentioned
surface at the point of the unit element. An anticommutative bilinear operation satisfying the Jacobi
identity is defined in the tangent space. With respect to this operation (multiplication), the tangent
space forms an algebra — Lie algebra. The connection between the algebra and the Lie group is carried
out through the exponentiating.

So, the subject of our attention in this paper is the compact simply connected Lie group G = SU(3).
The unitary unimodular group SU(3) is an eight-parameter group. In the physical literature, the Lie
algebra su(3) of the group SU(3) is usually considered the space of Hermitian matrices with zero trace.
The generators of this algebra are matrices

λ1 =

⎛

⎜⎜⎜⎝

ccc0 1 0

1 0 0

0 0 0

⎞

⎟⎟⎟⎠ , λ2 =

⎛

⎜⎜⎜⎝

ccc0 −i 0

i 0 0

0 0 0

⎞

⎟⎟⎟⎠ , λ3 =

⎛

⎜⎜⎜⎝

ccc1 0 0

0 −1 0

0 0 0

⎞

⎟⎟⎟⎠ ,

λ4 =

⎛

⎜⎜⎜⎝

ccc0 0 1

0 0 0

1 0 0

⎞

⎟⎟⎟⎠ , λ5 =

⎛

⎜⎜⎜⎝

ccc0 0 −i

0 0 0

i 0 0

⎞

⎟⎟⎟⎠ , λ6 =

⎛

⎜⎜⎜⎝

ccc0 0 0

0 0 1

0 1 0

⎞

⎟⎟⎟⎠ ,

λ7 =

⎛

⎜⎜⎜⎝

ccc0 0 0

0 0 −i

0 i 0

⎞

⎟⎟⎟⎠ , λ8 =
1√
3

⎛

⎜⎜⎜⎝

ccc1 0 0

0 1 0

0 0 −2

⎞

⎟⎟⎟⎠ , (9)

and moreover, an arbitrary element of the group SU(3) can be represented as

U = exp

(
i

8∑

k

αkλk

)
, (10)

where λk are Gell–Mann matrices, αk are real coefficients.

2)In physics, non-compact Lie groups arise when considering space-time symmetries and the dimension of such groups
is restricted. Groups of internal symmetries — groups of transformations of abstract spaces are compact and generally
speaking, there are no restrictions on their dimension (i.e., on the number of parameters). According to modern concepts,
these groups act independently: transformations performed in space-time manifolds do not cause changes in the internal
abstract spaces.
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ALGEBRAIC MODEL OF NON-ABELIAN SUPERSELECTION 479

In [32], parametrization of matrix elements of the SU(3) group using generalized Euler angles is
given, and expression (10), taking into account expressions (9), can be written as

U = eiλ3α1eiλ2α2eiλ3α3eiλ5α4eiλ3α5eiλ2α6eiλ3α7eiλ8α8 , (11)

where

0 ≤ α1, α3, α5, α7,≤ π; 0 ≤ α2, α4, α6 ≤ π/2; 0 ≤ α8 ≤ π/
√
3. (12)

According to [32], the invariant normalized Haar measure is represented as

dμ(g) =
4
√
3

π5
sin 2α2 cosα4 sin

3 α4 sin 2α6dα1dα2 · ... · dα8. (13)

Considering that the multipliers in (11) have the form

eiλ3α1 =

⎛

⎜⎜⎜⎝

ccceiα1 0 0

0 e−iα1 0

0 0 1

⎞

⎟⎟⎟⎠ , eiλ2α2 =

⎛

⎜⎜⎜⎝

ccccosα2 sinα2 0

− sinα2 cosα2 0

0 0 1

⎞

⎟⎟⎟⎠ ,

eiλ3α3 =

⎛

⎜⎜⎜⎝

ccceiα3 0 0

0 e−iα3 0

0 0 1

⎞

⎟⎟⎟⎠ , eiλ5α4 =

⎛

⎜⎜⎜⎝

ccccosα4 0 i sinα4

0 1 0

i sinα4 0 cosα4

⎞

⎟⎟⎟⎠ ,

eiλ3α5 =

⎛

⎜⎜⎜⎝

ccceiα5 0 0

0 e−iα5 0

0 0 1

⎞

⎟⎟⎟⎠ , eiλ2α6 =

⎛

⎜⎜⎜⎝

ccccosα6 sinα6 0

− sinα6 cosα6 0

0 0 1

⎞

⎟⎟⎟⎠ ,

eiλ3α7 =

⎛

⎜⎜⎜⎝

ccceiα7 0 0

0 e−iα7 0

0 0 1

⎞

⎟⎟⎟⎠ , eiλ8α8 =

⎛

⎜⎜⎜⎝

ccce
i
α8√
3 0 0

0 e
i
α8√
3 0

0 0 e
−i

2α8√
3

⎞

⎟⎟⎟⎠ , (14)

we obtain the following matrix elements of the matrix (10)

α11 = eiα1eiα3eiα5eiα7e
i
α8√
3 cosα2 cosα4 cosα6

− eiα1e−iα3eiα5eiα7e
i
α8√
3 sinα2 sinα6;

α12 = eiα1eiα3eiα5e−iα7e
i
α8√
3 cosα2 cosα4 sinα6

+ eiα1e−iα3e−iα5e−iα7e
i
α8√
3 sinα2 cosα6;

α13 = eiα1eiα3e
−i

2α8√
3 cosα2 sinα4;

α21 = −e−iα1eiα3eiα5eiα7e
i
α8√
3 sinα2 cosα4 cosα6

− e−iα1e−iα3eiα5eiα7e
i
α8√
3 cosα2 sinα6;

α22 = −e−iα1eiα3eiα5e−iα7e
i
α8√
3 sinα2 cosα4 sinα6 + e−iα1e−iα3e−iα5e−iα7e

i
α8√
3 cosα2 cosα6;

α23 = −e−iα1eiα3e
−i

2α8√
3 sinα2 sinα4; α31 = ieiα5eiα7e

i
α8√
3 sinα4 cosα6;

α32 = ieiα5e−iα7e
i
α8√
3 sinα4 sinα6; α33 = e

−i
2α8√

3 cosα4. (15)
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Also note that in the case of diagonal matrices λ3 and λ8, the equalities in (14) is obvious, and in the
case of non-diagonal matrices λ2 and λ5 we used the relation

exp(iϑH) = I + iH sinϑ+H2(cos ϑ− 1), (16)

which is valid for arbitrary Hermitian traceless matrices H with det H = 0. This the relation is also
valid for the first seven Gell–Mann matrices. It is noted in [33] that formula (16) coincides with the
Euler–Rodriguez formula for the group SO(3) of rotations around the axis 
n generated by spin matrices
H = 
n · 
J (J = 3) and hence SO(3) ⊂ SU(3).

3.3. Representation Space

Here we restrict ourselves to the case of two qutrites whose superselection sectors correspond to
the product of two endomorphisms with dimension dim(ρ) = 3. The product ρρ in this case can be
decomposed into a direct sum of ρρ = ρ6 ⊕ ρ̄3 endomorphisms with dim(ρ6) = 6 and dim(ρ̄3) = 3,
where ρ̄3 — conjugate endomorphism. However, in the future we will use the ρ → Hρ correspondence
and work with the more familiar tools of Hilbert spaces. Otherwise, we would have to deal with more
abstract concepts of categorical formalism (concepts of subobject, determinant, etc.).

So we have two coherent orthogonal subspaces H⊗H = H6 ⊕ H̄3, in each of which the irreducible
representations π6 and π̄3 of the group SU(3) act, where π ⊗ π = π6 ⊕ π̄3.

The basis of the space H̄3, in which the conjugate representation of the group SU(3) acts, is defined
by antisymmetric tensors [17]

ψ̂1 =
1√
2
(ψ2ψ3 − ψ3ψ2);

ψ̂2 =
1√
2
(ψ3ψ1 − ψ1ψ3);

ψ̂3 =
1√
2
(ψ1ψ2 − ψ2ψ1).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(17)

The basis of the space H6 in this case are symmetric tensors

e1 = ψ1ψ1;

e2 =
1√
2
(ψ1ψ2 + ψ2ψ1);

e3 =
1√
2
(ψ1ψ3 + ψ3ψ1);

e4 = ψ2ψ2;

e5 =
1√
2
(ψ2ψ3 + ψ3ψ2); e6 = ψ3ψ3.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Here ψ1, ψ2, ψ3 form the basis of the space H and satisfy the Cuntz relations (1) and (2). Thus, the
9-dimensional state space is divided into two superselection sectors, one of which is a conjugate sector.
Projectors to the basic states of the H6 space are defined by expressions (by (using (18))

Π11 = e1e
∗
1 ≡ ψ11ψ

∗
11, Π12 = e2e

∗
2 ≡ ψ12ψ

∗
12, Π13 = e3e

∗
3 ≡ ψ13ψ

∗
13,

Π22 = e4e
∗
4 ≡ ψ22ψ

∗
22, Π23 = e5e

∗
5 ≡ ψ23ψ

∗
23, Π33 = e6e

∗
6 ≡ ψ33ψ

∗
33. (19)

Similarly, taking into account (17), for projectors on the basic states of the space H̄3, we obtain the
expressions

Π̂23 = ψ̂1ψ̂
∗
1 ≡ ψ̂23ψ̂

∗
23, Π̂31 = ψ̂2ψ̂

∗
2 ≡ ψ̂31ψ̂

∗
31, Π̂12 = ψ̂3ψ̂

∗
3 ≡ ψ̂12ψ̂

∗
12. (20)
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3.4. The Transfer of Quantum Information

As an illustration, consider the transfer of quantum information using two qutrites. At the same
time, we will call the sender Alice, and the recipient Bob, as standard. For example, using the first of the
relations (19) and (15), the state (pure) ψ11 in the rotated coordinate system, we define as [13]

π6(g)ψ11 = π6(g)ψ1ψ1 = π6(g)ψ1π6(g)ψ1

= α2
11ψ11 + α11α21

√
2ψ12 + α11α31

√
2ψ13 + α2

21ψ22 + α21α31

√
2ψ23 + α2

31ψ33. (21)

Similarly, for conjugate basis elements ψ∗
1 , ψ

∗
2 , ψ

∗
3 we get

ψ∗
11π

+
6 (g) = ψ∗

1ψ
∗
1π

+
6 (g)

+ ᾱ2
11ψ

∗
11 + ᾱ11ᾱ21

√
2ψ∗

12 + ᾱ11ᾱ31

√
2ψ∗

13 + ᾱ2
21ψ

∗
22 + ᾱ21ᾱ31

√
2ψ∗

23 + ᾱ2
31ψ

∗
33. (22)

The projector Π11 to the pure state of ψ11 is transformed by the action of the group as

π6(g)Π11π
+
6 (g) = π6(g)ψ11ψ

∗
11π

+
6 (g). (23)

Therefore, considering expressions (21) and (22), we obtain

π6(g)Π11π
+
6 (g) = (α11ᾱ11)

2Π11 + 2α11ᾱ11α21ᾱ21Π12 + 2α11ᾱ11α31ᾱ31Π13

+ (α21ᾱ21)
2Π22 + 2α21ᾱ21α31ᾱ31Π23 + (α31ᾱ31)

2Π33 + α2
11ᾱ11ᾱ21

√
2ψ11ψ

∗
12

+ α2
11ᾱ11ᾱ31

√
2ψ11ψ

∗
13 + α2

11ᾱ
2
21ψ11ψ

∗
22 + α2

11ᾱ21ᾱ31

√
2ψ11ψ

∗
23 + ... (24)

Expression (24) contains a total of 36 terms, among which there are 6 projectors to the basic states (18)
and 30 operators corresponding to transitions between the states of the basis with coefficients depending
on the matrix elements (15) of the matrix of the fundamental representation of the group SU(3).

The group averaging procedure requires the calculation of the integral (see (23))

Π̃11 =

∫

G

π6(g)Π11π
+
6 (g)dμ(g), (25)

where the Haar measure is defined using the expressions (12), (13). Substituting expression (24)
into (25), we see that among 36 integrals, 30 will be zero due to the appearance of integrals of the
type

∫ π
0 exp(i2α1)dα1 = 0, etc. for products of α11ᾱ21, ... matrix elements (15). As a result, integrating

the coefficients in (24) with projectors on the basic states of the sector gives

Π̃11 =
1

6
(Π11 +Π12 +Π13 +Π23 +Π22 +Π33) . (26)

Since projectors (19) and (20) depend on the coordinate system, the pure state (for example, Π11)
prepared by Alice in her coordinate system, Bob must average when receiving (in the absence of
correlation between their systems), perceiving it as a mixed state (26). It is also easy to make sure
that [Π̃11, G] = 0, i.e., Π̃11 belongs to the algebra of observables OG.

Similarly, it can be shown that averaging over a group of any pure state from the sector H̄3, for
example, Π̂23, leads to a mixed state

˜̂
Π23 =

1

3

(
Π̂23 + Π̂31 + Π̂12

)
. (27)

The information encoded by Alice, using the pure states of the sectors H6 and H̄3, taking into
account (27), is recognized by Bob by a projective measurement performed using the superselection
operator (8)

S = μ1

(
1

6
(Π11 +Π12 +Π13 +Π23 +Π22 +Π33)

)
+ μ2

(
1

3
(Π̂12 + Π̂23 + Π̂31)

)
, (28)

where μ1 and μ2 are probabilities determined by the frequency of the sent signals encoded respectively
by symmetric and antisymmetric states of the sectors H6, H̄3.
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3.5. Algebra of Observables and Sector Statistics
Algebra of observables

According to (5), consider the ∗-algebra 0O3 = ⊕0
kOk

3 , where k = 0,±1,±2,±3, r = 0, 1, 2, 3,
i.e., the algebraic part of the C∗-Cuntz algebra O3. The generators of this algebra are finite linear
combinations of maps of the form (4), and, therefore, the structures of the operators of the corresponding
spaces 0Ok

3 for various values of k are determined using these expressions, taking into account the
structure of the bases of the resulting orthogonal coherent subspaces. For example, consider an
operator from 0O0

3 with r = 2 of the form t ∈ (H⊗2,H⊗2), which is the direct sum of the operators
t1, t2, t3 and t4 due to the decomposition of H⊗H = H6 ⊕ H̄3 with basis defined by (17) and (18).
Considering the expression (4), as well as (17) and (18), we have t1 = ψ̂iψ̂

∗
j ∈ (H̄3, H̄3) (i, j = 1, 2, 3),

t2 = eiψ̂
∗
j ∈ (H̄3,H6) (i = 1, 2, ..., 6; j = 1, 2, 3), t3 = ψ̂ie

∗
j ∈ (H6, H̄3) (i = 1, 2, 3; j = 1, 2, ..., 6), t4 =

eie
∗
j ∈ (H6,H6) (i, j = 1, 2, ..., 6). The operators t1 and t4 are linear transformations of the spaces H̄3

and H6 into themselves and simultaneously intertwining operators of the corresponding endomorphisms
of the category Tρ, i.e., t1 ∈ (ρ̄3, ρ̄3), t4 ∈ (ρ6, ρ6). In addition, they are projectors on the basis vectors
of the spaces H̄3 and H6. Thus, these operators act inside the sector without changing the number of
qutrites and therefore belong to the algebra of observables OSU(3). Projectors (19) and (20) are obtained
from t1 and t4 for i=j. Operators t2 ∈ (ρ̄3, ρ6) and t3 ∈ (ρ6, ρ̄3) act between sectors and play the role of
field operators that change the charge of the sector.

Similarly, operators from 0O1
3, 0O2

3, etc. can be analyzed. Thus, in the presence of a compact group
SU(3), all operators belonging to O3 are divided into two classes of operators: acting within sectors and
between sectors. The operators acting inside the sectors belong to the subalgebra OSU(3) ⊂ O3, which
corresponds to the algebra of observables within the framework of the model. The operators acting
between sectors change the charge number of the sector and belong to the field algebra O3.

In addition, there are unitary operators ϑ(r, s) : Hr ⊗Hs → Hs ⊗Hr, also belonging to the algebra
of observables, i.e., ϑ(r, s) ∈ (Hr+s,Hr+s)G [25]. In the case of the above orthogonal subspaces we have

ϑ(H̄3, H̄3) =
3∑

i=1

3∑

j=1

ψ̂iψ̂jψ̂
∗
i ψ̂

∗
j , (29)

ϑ(H̄3,H6) =
6∑

i=1

3∑

j=1

eiψ̂je
∗
i ψ̂

∗
j , (30)

and

ϑ(H6,H6) =
6∑

i=

6∑

j=1

eieje
∗
i e

∗
j . (31)

As we will see below, the operators (29)–(31) play an important role in determining sector statistics.

Statistics of Superselection Sectors

In quantum mechanics, linear combinations of solutions of the Schrodinger equation for a system
of n identical particles, differing only in permutations of their coordinates, are divided by the type of
symmetry into various non-miscible combinations, forming bases of irreducible representations of the
permutation group. According to the exclusion principle, a system of identical particles having spin s
can only be in symmetric or antisymmetric states that are not degenerate by permutations, since the
total wave function of such a system is multiplied by (−1)2s when any pair of particles is permuted.
Therefore, states can be classified according to their statistics3).

3)Note that already within the framework of standard quantum mechanics, the existence of so-called paroparticles is allowed,
which can be described using multidimensional representations of the group Pn. Theoretically, paroparticles can include
real particles that differ in certain internal quantum numbers (for example, color, isospin), as well as some quasiparticles,
such as Frenkel excitons, magnons in periodic lattices.
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However, in such systems, where the interpretation in terms of particles becomes practically
meaningless (for example, when it is necessary to take into account the interaction), the statistics of
the system cannot be determined using permutations of particles. One of the approaches to solving
this problem has been developed in algebraic quantum field theory [19]. Its essence is in considering
the statistics of the superselection sector, which is determined solely on the basis of the observed
values belonging to this sector. Using the left inverse φ (see Appendix) to each superselection sector,
a number (statistical parameter) λρ = φ(ε(ρ, ρ)) can be compared in the only way, which marks the
irreducible representations of the permutation group Pn. Here ε(ρ, ρ) ∈ (ρ2, ρ2) is a unitary operator
in the symmetric tensor category (see Appendix). For an irreducible endomorphism ρ we have that
φ(ε(ρ, ρ)) = λρI, where λρ ∈ {0} ∪ {±d−1 : d ∈ N}, and λρ =

1
d corresponds to a parabose statistics

of the order d with a Young tableau having a column length of ≤ d, λρ = −1
d corresponds to parafermi

statistics of the order of d and a Young tableau having a string length of ≤ d. The case λρ = 0 describes
infinite statistics that are not observed for real particles4). Ordinary statisticians Bose and Fermi
correspond to the values of λρ = ±1. The last two simple cases are realized if only ρ is an automorphism
of the algebra of observables. The natural number d is called the statistical dimension of a superselection
sector, which coincides with the notion of the dimension dim(ρ) of an object ρ of a symmetric tensor
category. In the case of the Cuntz algebra, we have φ(c) = (1/d)

∑d
i=1 ψ

∗
i cψi, c ∈ Od [25]. In addition,

in our model, the equality ε(ρ, ρ) = ϑ(ρ, ρ) = ϑ(H,H) is valid, therefore, for the sectors discussed above,
we have

φ(ε(ρ̄3, ρ̄3)) = φ(ϑ(H̄3, H̄3)) =
1

3

∑

k,i,j

ψ̂∗
kψ̂iψ̂jψ̂

∗
i ψ̂

∗
j ψ̂k,

where ϑ(H̄3, H̄3) is defined by expression (29). Since ψ̂∗
kψ̂i = δki and ψ̂∗

j ψ̂k = δjk according to the Cuntz

relations (1) and (2), then φ(ϑ(H̄3, H̄3)) = 1/3
∑

k ψ̂kψ̂
∗
k = (1/3)1H̄3

, 1H̄3
∈ (H̄3, H̄3) (more details

about conjugate objects are given in [17]). Therefore, the statistical parameter λ = 1/3 defines a sector
with parabose statistics of order 3. Similarly,

φ(ε(ρ6, ρ6)) = φ(ϑ(H6,H6)) = 1/6

6∑

i,j,k=1

e∗keieje
∗
i e

∗
jek = (1/6)1H6 ,

and we get a sector with parabose statistics of order 6 (where 1H6 ∈ (H6,H6) and ϑ(H6,H6) is defined
by the expression (31)).

4. CONCLUSIONS

In this paper, the algebraic model proposed by us in [13] is extended, taking into account the
conjugate endomorphism with dimension dim(ρ) = 3. The basis of the model is symmetric tensor
C∗-category whose objects are non-Abelian superselection sectors of the physical system under
consideration [22] (the role of category theory in modern quantum theory can be found, for example,
in [34, 35]). Arrows of a category that are intertwining operators and change the charge of a given sector
can be considered as elements of a field algebra, and morphisms acting inside a sector can be interpreted
as elements of the algebra of observables. Taking into account the conjugate object therefore allows
you to study both the operators that translate the conjugate sector into themselves, and the conjugation
operators that make the transition from the usual sector to the conjugate, which we considered in clause
3.5. As an approbation, the process of transmitting quantum information using a three-level system
was also considered, and it was seen that the amount of information transmitted is equal to the number
of superselection sectors. Here we have restricted ourselves only to the case of decomposition of two
qutrites into two coherent superselection sectors (defined by (28)): a three-dimensional conjugate sector
and a six-dimensional ordinary sector (H⊗H = H6 ⊕ H̄3). Other possible decomposition channels
remained outside our attention (for example, in the case of two qutrites, the case of H̄ ⊗ H̄ = ι⊕ ...,
where ι is a vacuum non-Abelian sector) and analysis of the connection of the (possible) degree of
security of cryptographic protocols with conjugated non-Abelian charges.

4)This case describes anions.
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Appendix

A category C is called a C∗-category if the set of morphisms (ρ, ρ1) between two objects ρ, ρ1
forms a complex Banach space and the composition of morphisms is a bilinear map of t, s → t ◦ s with
||t ◦ s|| ≤ ||t|| ◦ ||s||. In this category, there is a contravariant functor ∗ that reverses morphisms and
acts identically on objects, and the norm of the morphism satisfies C∗ is the property ||r∗ ◦ r|| = ||r||2
for any r ∈ (ρ, ρ1). The set of morphisms (ρ, ρ) in C∗-categories C forms C∗-algebra for each ρ ∈ obj C.

Tensor C∗-category C is a C∗-category equipped with a tensor product ⊗. This means that each
pair of objects ρ, ρ1 corresponds to an object ρ⊗ ρ1, and C has an identical object ι, for which the
relation ρ⊗ ι = ρ = ι⊗ ρ. Moreover, for two morphisms t ∈ (ρ, ρ1) and s ∈ (ρ2, ρ3) there is a morphism
t× s ∈ (ρ⊗ ρ2, ρ1 ⊗ ρ3). For the case of the category of endomorphisms of the algebra that we used in
this paper, the relation holds

t× s = tρ(s) = ρ1(s)t. (32)

The mapping t, s → t× s is associative and bilinear and

1ι × t = t = t× 1ι, (t× s)∗ = t∗ × s∗.

Interchange law holds

t× s ◦ t1 × s1 = (t ◦ t1)× (s ◦ s1), (33)

whenever the left hand side is defined (note that × will be evaluated before ◦).
Such categories are often called strict monoidal, since the associativity law

(ρ⊗ ρ1)⊗ ρ2 = ρ⊗ (ρ1 ⊗ ρ2), ι⊗ ρ = ρ⊗ ι = ρ

is strictly executed. A similar relation holds for morphisms. In other words, a strict monoidal category
is a C∗-category where associative bilinear functor ⊗ : C × C → C commuting with the conjugation
operation ∗. Also note that in a strict monoidal category, the set of morphisms (ρ, ρ1) forms not only the
structure of a vector space, but also has the natural structure of a (ι, ι)-bimodule.

The category C is called closed with respect to subobjects if for each projector E ∈ (ρ, ρ) there
is an isometry t ∈ (ρ1, ρ) such that tt∗ = E. The category C is called closed with respect to direct
sums if for the given objects ρi (i = 1, 2) there exists an object ρ and isometries si ∈ (ρi, ρ) such that
s1s

∗
1 + s2s

∗
2 = 1ρ.

The category C is called symmetric if there is permutation symmetry, i.e., if there is a mapping
ε : C � ρ1, ρ2 −→ ε(ρ1, ρ2) ∈ (ρ1 ⊗ ρ2, ρ2 ⊗ ρ1) that satisfies the conditions

(1) ε(ρ3, ρ4) ◦ s× t = t× s ◦ ε(ρ1, ρ2),

(2) ε(ρ1, ρ2)
∗ = ε(ρ2, ρ1),

(3) ε(ρ1, ρ2 ⊗ ρ) = 1ρ2 × ε(ρ1, ρ) ◦ ε(ρ1, ρ2)× 1ρ,

(4) ε(ρ1, ρ2) ◦ ε(ρ2, ρ1) = 1ρ2⊗ρ1 ,

where t ∈ (ρ2, ρ4), s ∈ (ρ1, ρ3). From (2)–(4) it follows that for any ρ the relation ε(ρ, ι) = ε(ι, ρ) = 1ρ
is valid. Symmetric tensor categories are denoted as (C, ε).

Permutation symmetry for irreducible endomorphisms is conveniently classified using the left inverse.
Left inverse of the object ρ is a set of nonzero linear maps φρ = {φρ

ρ1,ρ2 : (ρ⊗ ρ1, ρ⊗ ρ2) −→ (ρ1, ρ2)}
satisfying

(1) φρ
ρ3,ρ4(1ρ × t ◦ r ◦ 1ρ × s∗) = t ◦ φρ

ρ1,ρ2(r) ◦ s∗,

(2) φρ
ρ1⊗ρ3,ρ2⊗ρ3(r × 1ρ3) = φρ

ρ1,ρ2(r)× 1ρ3 ,

(3) φρ
ρ1,ρ1(s

∗
1 ◦ s1) ≥ 0,

(4) φρ
ι,ι(1ρ) = 1ι,

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 1 2024



ALGEBRAIC MODEL OF NON-ABELIAN SUPERSELECTION 485

where s ∈ (ρ1, ρ3), t ∈ (ρ2, ρ4), r ∈ (ρ⊗ ρ1, ρ⊗ ρ2) and s1 ∈ (ρ⊗ ρ1, ρ⊗ ρ1). We say that C has left
inverse if any object of this category has a left inverse. The left inverse plays an important role in
describing the statistics of superselection sectors.
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