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The collective moment of inertia is derived analytically within the cranking model in
the adiabatic mean-field approximation at finite temperature. Using the nonperturba-
tive periodic-orbit theory the semiclassical shell-structure components of the collective
moment of inertia are obtained for any potential well. Their relation to the free-energy
shell corrections are found semiclassically as being given through the shell-structure com-
ponents of the rigid-body moment of inertia of the statistically equilibrium rotation in
terms of short periodic orbits. Shell effects in the moment of inertia disappear exponen-
tially with increasing temperature. For the case of the harmonic-oscillator potential one
observes a perfect agreement between semiclassical and quantum shell-structure com-
ponents of the free energy and the moment of inertia for several critical bifurcation

deformations and several temperatures.

1. Introduction

The collective rotations of nuclei were successfully described within several theo-

retical approaches, in particular, the cranking model.1–6 It was shown4,5 that the

moments of inertia (MI) can be presented as a sum of the smooth classical rigid-body

term with ~ corrections of the Extended Thomas-Fermi approach (ETF)7–10 and

shell corrections4 given by the shell-correction method (SCM)11,12 adjusted to the

rotational problem. For the harmonic oscillator potential exact analytical solutions

are obtained for any rotational frequency,13 and extended to finite temperatures.14

It is worth applying the semiclassical periodic-orbit theory10,15,16 (POT) as one of

the powerful and fruitful theoretical tools for a deeper understanding and analyti-

cal analysis of the main features of the shell structure in a finite rotating fermion
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system.17–21 A “classical rotation” of the spherical nucleus was considered17 as an

alignment of the angular momenta of the particles (see also similar supershell effects

in magnetic susceptibilities18,19). For collective rotations of deformed nuclei around

an axis perpendicular to the symmetry axis, this structure was studied semiclas-

sically20 by using the classical perturbation theory10,22 within the spheroid cavity

model.

In the present work the shell-structure corrections to the MI for the collective

rotation are derived within the cranking model in terms of the free-energy shell cor-

rections in the adiabatic approximation by using the nonperturbative POT. Let us

introduce an order parameter β = (ω/Ω) (S/~) which is the product of the rotation

frequency ω in units of Ω and the action S along short classical trajectories in units

of ~ where ~Ω is the major shell spacing in an N particle system (i.e. the distance

between the gross shells near the Fermi surface which is approximately given by

~Ω = εF /N1/3 through the time of particle motion along dominating short periodic

orbits in the potential well10,16). It turns out that, contrary to the classical per-

turbative results,20 this order parameter can be not small in our approach (β∼> 1),

which is largely due to the fact that the semiclassical parameter S/~ ∼ kF R � 1,

where kF is the Fermi momentum and R gives the size of the finite Fermi system,

R = r0N
1/3. This approach is based on the semiclassical Gutzwiller expansion for

the Green’s function,15 but extended to systems of higher symmetries.10,16,23 Ex-

plicit analytical results are obtained for the deformed harmonic oscillator potential,

as presented in section 3 below.

2. Cranking Model for Nuclear Rotations

Within the cranking model, the nuclear rotation around the x axis perpendicular

to the symmetry z axis of the axially symmetric mean-field potential V (r) can be

described by solving the eigenvalue problem for the single-particle (s.p.) Hamil-

tonian in the body-fixed rotating coordinate system, which is usually called the

Routhian
3–5

Hω = H − ω`x, 〈`x〉ω ≡ ds

∑

i

ni 〈`x〉ωi = Ix . (1)

Here, `x is the operator of the angular momentum projection onto the x axis, and

ds is the spin (spin-isospin) degeneracy. The Lagrangian multiplier ω (rotation fre-

quency of the body-fixed coordinate system) is determined through the constraint

on the nuclear angular momentum Ix evaluated as the quantum average of the op-

erator `x, as in Eq. (1), i.e. ω = ω(Ix). The particle number conservation determines

the chemical potential λ through the Fermi occupation numbers ni of the s.p. state

i, N = ds

∑

i ni, where ni ≡ n (εi) = {1+exp [(εi − λ)/T ]}−1, with the eigenvalues

εi of Hamiltonian H and the temperature T . For the MI Θx one has3,18,19

Θx = [∂〈`x〉ω/∂ω]ω=0 =
[

∂2E(ω)/∂ω2
]

ω=0
, (2)

where E(ω) = Eω + ωIx is the energy of the rotating Fermi system, with Eω

the eigenvalue of the Routhian Hω (1). The yrast line E(Ix) can be determined
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(at zero temperature) by eliminating the frequency ω through the definition of

the kinematical MI Θx = Ix/ω (equivalent to the dynamical MI in the adiabatic

approximation) yielding E(Ix) = E(0) + I2
x/2Θx.

For the derivation of shell effects within the POT, it turns out to be helpful to

use the coordinate representation of the Green’s function14,21,24,25 G,

Θx =
2ds

π

∫ ∞

0

dε n(ε)

∫

dr1

∫

dr2`x(r1)`x(r2)Re [G (r1, r2; ε)] Im [G (r1, r2; ε)] , (3)

where n(ε) are the Fermi occupation numbers n(εi) at εi = ε; `x(r1) and `x(r2) are

the s.p. angular-momentum projections onto the perpendicular rotation x axis at the

spatial points r1 and r2, respectively. With the usual energy-spectral representation

for the one-body Green’s function G in the mean-field approximation, one obtains

from (3) the well-known second-order perturbation result of the cranking model3–5

including the diagonal terms. The relation between the rotation frequency ω and

the chosen angular momentum Ix is given through the constraint on the r.h.s. of

Eq. (1), which can be written in the form Ix = Θxω where the MI Θx is determined

through Eq. (3).

In the case of the deformed HO potential and for a rotation around the x axis, the

direct diagonalization of the Routhian (1) (without using a perturbation expansion)

yields the s.p. energies εi(ω) and moments of inertia Θx(ω) obtained13 analytically

for any frequency ω. The calculation can be easily generalized to finite temperatures

by using the oscillator Bose occupation numbers.14 In the small rotation-frequency

limit (adiabatic case), ω → 0, the ω independent s.p. spectrum can be used εi =

~ω⊥ (N⊥i + 1) + ~ωz

(

Nzi + 1
2

)

, N⊥i = Nxi + Nyi, where Nκi and ωκ (κ = x, y, z)

are the HO quantum numbers and the partial frequencies, with, for axial symmetry,

ωx = ωy = ω⊥ and ω2
⊥ωz = ω3

0 . For the MI13,14 Θx(ω) one finds2,3 in the adiabatic

limit ω → 0

Θx =
ds ~

2ω⊥ωz

[

(ωz − ω⊥)
2

ω⊥ + ωz
(ℵy + ℵz) +

(ωz + ω⊥)
2

ω⊥ − ωz
(ℵz − ℵy)

]

, (4)

where ℵκ =
∑

i ni

(

Nκi + 1
2

)

. (ℵx = ℵy for an axially symmetric potential.) The

energy of this system is then given by

E(ω) ≡ Eω + ωIx = ds~ (2ω⊥ℵy + ωzℵz) +
1

2
ω2Θx . (5)

Notice that starting from (1) one may explicitly calculate analytically the matrix

elements of the angular momentum projection operator `x in the perturbation ap-

proach for the HO potential. Using these matrix elements and the s.p. eigenvalues of

the Routhian Eq. (1), one also arrives at Eq. (4) as obtained in the nonperturbative

derivation.

In the case of a statistically equilibrium,

ωxℵx = ωyℵy = ωzℵz, (6)

Eq. (4) reduces to the rigid-body MI

Θrig
x ≡ m

∫

dr ρ(r)
(

y2 + z2
)

= ds

∑

i

ni 〈i
∣

∣y2 + z2
∣

∣ i〉 = ds~

( ℵy

ω⊥

+
ℵz

ωz

)

, (7)
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where ρ (r) is the particle density. The second term in Eq. (4) for Θx corresponds

to the transitions between s.p. levels inside (∆N = 0) a major N shell,3 whereas

the first term is related to the coupling of s.p. levels through shells (∆N = 2). In

the spherical limit,14,21 this term approaches identically the alignment expression

for MI Θz with the diagonal matrix elements of the operator `x,

Θx → Θz → −ds

∑

i

dni

dεi

∣

∣

∣
〈i|`x|i〉

∣

∣

∣

2

. (8)

For the calculation of shell corrections it is convenient to rewrite Eq. (4), for the

inertia Θx in terms of the free energy F of the HO system at finite temperature T

and the rigid body MI Θrig
x , Eq. (7). By eliminating the quantum numbers ℵy and

ℵz from equation (7) for Θrig
x , and Eq. (5) for the HO energy E(ω) at ω = 0, one

obtains

Θx =
1

ω2
⊥ (2η2 − 1) (η2 − 1)

[

ω2
⊥

(

2η4 + 9η2 + 1
)

Θrig
x − 4η2

(

1 + η2
)

F
]

. (9)

with the deformation parameter η = ω⊥/ωz. By using the explicit definition of

Θrig
x in (7) for a HO potential, which results in Θrig

x = (1 + η2)F/3ω2
⊥, the shell

component of the MI δΘx (and δΘz) can thus be easily separated from its smooth

part through the standard free-energy shell correction4,5,12 δF ,

δΘx =
1 + η2

3ω2
⊥

δF ≡ δΘrig
x , δΘz =

2

3ω2
⊥

δF ≡ δΘrig
z . (10)

The convergence (8) for the corresponding shell corrections in the spherical align-

ment limit η → 1 becomes obvious when comparing the central expressions for δΘx

and δΘz in Eq. (10).

3. Semiclassical Shell-Structure Approach

For the Green’s function G in (3) we shall use the semiclassical Gutzwiller trajectory

expansion15 extended to the Hamiltonian symmetries,10,16,23

G (r1, r2; ε) =
∑

α

Gα =
∑

α

Aα (r1, r2; ε) exp

[

i

~
Sα (r1, r2; ε) −

iπ

2
µα

]

. (11)

The summation index α runs over all classical isolated paths inside the potential

well V (r) which, for a given energy ε, connect two spatial points r1 and r2 . Here Sα

is the classical action along such a trajectory α, and µα denotes the phase associated

with the Maslov index10,16 through the number of caustic and turning points along

the path α. The amplitudes Aα of the Green’s function depend on the classical

stability factors and trajectory degeneracy, determined by the symmetries of the

potential.10,15,16,23

In our derivations, we shall use an averaging in phase-space variables, in par-

ticular, Strutinsky local averaging over the energy spectrum near the Fermi surface

with a Gaussian weight function and correction polynomial. Such an averaging leads
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Fig. 1. Trajectories connecting points r1 and r2 without (α0, solid line) and with reflection (α1,
dashed line).

to the dominating contribution of shorter trajectories from r1 to r2. Therefore, like

for the semiclassical calculations16 of the averaged level density in the asymptotic

limit Sα/~ � 1, it is convenient to separate out in the sum (11) for the Green’s

function the single term Gα0
related to the shortest trajectory α0, directly joining

r1 and r2 (see Fig. 1) from all other terms G1 associated with longer trajectories

having reflections from the potential boundary, writing

G = Gα0
+

∑

α6=α0

Gα = Gα0
+ G1, (12)

with

Gα0
≈ G0 = − m

2π~2r12

exp

[

i

~
r12p(r)

]

, r12 = |r2 − r1|, (13)

where, in the nearly local approximation,25–27 p(r) = |p(r)| =
√

2m[ε − V (r)] ,

is the particle momentum at the spatial point r = (r1 + r2)/2. The second term

G1 of the Green’s function trajectory expansion (12) is responsible16,23,24 for the

oscillating part of the level and particle densities and the MI, in particular their

shell fluctuations. In the adiabatic approach3,21 the classical angular-momentum

projection `x(r) in the rotating frame is essentially determined by the global rotation

rather than by the motion of particles along the trajectories α inside the nucleus.

This picture is consistent with the separation of the intrinsic motion from vibration

and rotation modes in this approach. Performing in Eq. (3) first an integration

by parts over ε and then over the center of mass and relative coordinates r =

(r1 + r2)/2 and s = r2 − r1 (instead of r1 and r2) one may introduce the local

spherical coordinate system for the integration variable s with the symmetry z axis

and center at the point r1. By using the semiclassical expansion (12) we take smooth

quantities in front of the sharply peaked δn(ε) near the Fermi energy ε = λ in the

integrand. Averaging in phase-space variables with the energy-spectrum smoothing

parameter Γ larger than the distance between energy levels and smaller than that
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between the gross shells ~Ω near the Fermi surface leads to the local approximation

in terms of shorter trajectories. In this way, one approximately obtains for the

MI δΘx the shell correction δΘrig
x to the rigid-body TF approach. The TF MI

was derived25 through Eq. (3) within the nearly local approximation (13) of the

Green’s function expansion (12). We applied the average in phase-space variables

for convergence to the contributions to shorter trajectories in Eq. (11). The cranking

model for nuclear rotations implies that the correlation corrections should be small

enough, with respect to the main rigid-body component δΘrig
x , to be neglected.

Other contributions can also be referred to as a fluctuation correction to the rigid-

body MI at leading order in ~
1/2. Finally, we arrive at the leading semiclassical MI

shell correction for the perpendicular (collective) rotation for the deformed HO in

the following form:

δΘx,scl ≈ δΘrig
x = m

∫

dr r2
⊥δρ (r) , r2

⊥ = y2 + z2, (14)

where δρ(r) is the shell correction to the particle density

ρ(r) = −ds

π
Im

∫

dε n (ε) [G (r1, r2; ε)]r1=r2=r
. (15)

A similar expression for the alignment MI shell correction δΘz is obtained. For the

particle density ρ(r) one has in the semiclassical approximation

ρ(r) ≈ ρscl (r) = ρTF (r) + δρscl (r) , (16)

where ρTF is for simplicity the TF approximation (more exactly ETF including the

~ corrections),

ρTF (r) = −ds

π
Im

∫

dε n (ε) [G0 (r1, r2; ε)]r1=r2=r
=

dsp
3
F

6π2~3
, (17)

up to temperature corrections of the order of (T/εF )2, and accordingly

δρscl (r) = −ds

π
Im

∫

dε δn (ε) [G1 (r1, r2; ε)]r1=r2=r
. (18)

Notice that the semiclassical POT derivations of the oscillating part of the particle

density (18) were performed28 in terms of the classical closed trajectories for various

Hamiltonians. Thus, the semiclassical MI can be split into smooth and oscillating

components,

Θx ≈ Θrig
x scl = Θrig

x TF + δΘrig
x scl, (19)

with the smooth TF (or ETF) part

Θrig
xTF = m

∫

dr r2
⊥ ρTF (r) =

mds

6π2~3

∫

dr p3
F r2

⊥ (20)
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and the oscillating term

δΘrig
x scl = m

∫

dr r2
⊥ δρ (r) = −mds

π
Im

∑

α6=α0

∫

dε δn(ε)

∫

dr r2
⊥ {Aα (r1, r2; ε)

× exp

[

i

~
Sα (r1, r2; ε) −

iπ

2
µα

]}

r1=r2=r

. (21)

Within a precision of the semiclassical approximation, we evaluate the spatial inte-

gral by the stationary phase method (SPM) extended to continuous symmetries10,16

with the stationary phase condition,
[

∂Sα (r1, r2; ε)

∂r1

+
∂Sα (r1, r2; ε)

∂r2

]∗

r1=r2=r

≡ (−p1 + p2)r1=r2=r
= 0. (22)

where the asterisk means the SPM value of the spatial coordinates and momenta,

rj = r∗j and pj = p∗
j (j = 1, 2) at the closed trajectories in the phase space, r∗1 = r∗2

and p∗
1 = p∗

2, i.e. the SPM equations (22) are equivalent to the periodic orbit (p.o.)

conditions. Other smooth factors can be taken off the integral at these stationary

points defined by Eq. (22). Assuming that quantum averages 〈κ2〉/ε are smooth

enough functions of ε as compared to other factors, for instance δn or exponents

with a large argument Sα/~, one may take them approximately off the integral over

ε at the chemical potential, ε = λ. Therefore, the main contribution into the integral

in Eq. (21) is coming from the p.o. stationary-phase points of Eq. (22). Similarly,

like for the calculation of the level density shell corrections δgscl, the SPM condition

(22) is identity for any stationary point of the classically accessible spatial region for

particle motion filled by p.o. families in the case of their high degeneracy K ≥ 3, for

instance, for the contribution of the 3-dimensional (3D) orbits in the HO potential

well. The stationary points occupy some spatial subspace for smaller degeneracy

K. In the latter case of the equatorial (EQ) orbits (K = 2) the SPM condition

is identity in the equatorial plane z = 0. Finally, for the MI shell corrections one

obtains

δΘκ,scl ≈ δΘrig
κ,scl, δΘrig

κ,scl =
[(

1 + η2
1

)

/3ω2
⊥

]

δFscl, (23)

where η1 = η for κ = x and η1 = 1 for κ = z.

For the Strutinsky energy shell correction at T = 0 one has

δE = Es.p. − Ẽs.p. = ds

∑

i

(εi − λ) δni ≈ ds

∫

dε (ε − λ) δg(ε) δn (ε) . (24)

At finite temperature T , for the shell correction to the free energy, F = E − TS
with E = ds

∑

i

εi ni, one writes δF = δE − TδS where δF (T, N) = δΩ(T, λ) and

δΩ is the shell component of the grand thermodynamical potential Ω(T, λ).

In the semiclassical approximation (POT),

δF ≈ δFscl (T, N) = Re
∑

p.o.

δFp.o., δFp.o. = δUp.o. Q (Zp.o.) , (25)
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with

δUscl = Re
∑

p.o.

δUp.o., δUp.o. = ds
~

2

t2p.o.

δgp.o.(λ). (26)

Here,

δgp.o.(ε) = Bp.o. (ε) exp

[

i

~
Sp.o.(ε) − i

π

2
µp.o.

]

(27)

is the p.o. component of the oscillating part of the level density

δgscl(ε) = − 1

π
Im

∫

dr [G1(r1, r2; ε)]r1=r2=r
≈ Re

∑

p.o.

δgp.o.(ε), (28)

Sp.o.(ε) and µp.o. are the action and Maslov index along the p.o., Bp.o.(ε) is the level

density amplitude depending on the p.o. stability factors and degeneracies.10,15,16,23

In Eq. (25), the temperature damping factor Q, which serves the exponential con-

vergence of the MI with increasing temperature T and time of particle motion tα,

is given17–20 by

Q(Z) =
πZ

sinh(πZ)
, Zp.o. =

tp.o.T

~
. (29)

In the case of incommensurable HO frequencies one has only EQ p.o.s with the

action Sn(ε) = εtn, tn = nTEQ, and period TEQ = 2π/ωEQ = 2πn⊥/ω⊥ = 2πnz/ωz.

For their contributions δUEQ into the energy shell correction δU of the HO one

finds23

δUEQ =
∑

n

2dsλ ω2
EQ

(2πω⊥n)
2 √

Fn

sin

(

2πnλ

~ωEQ

)

, Fn = 4sin2

(

πnωz

ωEQ

)

. (30)

For the commensurable frequencies ω⊥ : ωz = n⊥ : nz, one has the complete

degeneracy of the classical motion of particle (K = 4) along the 3D p.o.s with the

period T3D = 2π/ω3D = 2πn⊥/ω⊥ = 2πnz/ωz = (2π/ω0)
(

n2
⊥nz

)1/3
. The POT

energy shell correction23 is a sum of the contributions of the 3D and EQ p.o.s,

δUscl = δU3D + δUEQ where

δU3D =
∑

n

ds λ2 ω2
3D

(2π)2 ~ω3
0 n2

cos

[

2πnλ

~ω3D
− πn (2n⊥ + nz)

]

. (31)

4. Comparison with Quantum Results

Fig. 2 shows the semiclassical energy shell–correction δUscl (26) and the corre-

sponding quantum SCM calculations of δE Eq. (24) as functions of the chemical

potential λ at zero temperature for different critical symmetry-breaking and bifurca-

tion deformations10 η = 1 and 6/5, 2. This comparison exhibits a practically perfect

agreement between the semiclassical (SCL) and quantum (QM) results, especially

for η = 1 and 2. Notice that this agreement is not exact even for the semiclassical

free energy shell corrections at zero temperature because we neglected the terms
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Fig. 2. The quantum (QM) Eq. (24) and semiclassical (SCL) Eq. (26) shell-structure energies,
δE ≈ δUscl, at zero temperature T = 0 vs the chemical potential λ for the spherical HO in units
of ~ω0 at critical deformations η = 1, 1.2 and 2; 3D frequent dots show the contribution of the 3D
orbits, and EQ thin dashed curves present the EQ orbit contribution.
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Fig. 3. The shell-structure free energy δF as function of particle number variable, N 1/3 for the

critical deformations η = 1, 1.2 and 2 at temperature T = 0.1 in HO units ~ω0; the SCM smoothing
parameters γ = 1.5 − 2.5~ω0, M = 4 − 8; other notations are the same as in Fig. 2.

of smaller order of the expansion in ~
1/2 after integration over the s.p. energies by

parts, in contrast to the level-density calculations for the HO potential. Phases of

the oscillations of the level density are linear in energy but we have to account for

the energy dependence of their amplitudes. For the spherical case (η = 1) one has

only contributions of the families of 3D orbits (with degeneracy K = 4). At the bi-

furcation points η = 6/5 and 2 the relatively simple families of 3D p.o.s (of highest
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degeneracy K = 4) appear along with EQ trajectories of smaller degeneracy. For

η = 6/5 one mainly has contributions from EQ p.o.s because 3D orbits are generally

too long in this case. For the bifurcation point η = 2 one finds an interference of

two comparably large contributions of EQ and 3D orbits, Eqs. (30) and (31) respec-

tively, with different periods, T3D = 2TEQ, as seen from the bottom part of Fig. 2.

The semiclassical free-energy shell-correction δFscl, Eq. (25), is displayed in Fig. 3

as function of the particle-number variable, N 1/3, and compared at a temperature

of T = 0.1~ω0 with the corresponding quantum SCM results for the same critical

deformations. This comparison also shows practically a perfect agreement between

the semiclassical and quantum results with a similar p.o. structure. As seen from

Figs. 2 and 3, instead of the concaved parabolas, depending on the chemical po-

tential λ, we observe the convexed ones owing to the oscillating component δλ of

λ = λ̃ + δλ as functions of the particle number parameter N 1/3 (λ̃ is the averaged

λ in the SCM).

A similar comparison is presented in Fig. 4 for the shell corrections to the MI

δΘx. Again, an excellent agreement is observed between semiclassical and quantum

semiclassical free-energy shell-correction δFscl, Eq. (25), is displayed in Fig. 3 as

results which is not really astonishing because of the proportionality of the δΘx

to δF (see Eqs. (10) and (23)). One finds in particular the same clear interference

of contributions of 3D and EQ orbits in the shell corrections to the MI at η = 2.

The exponential decrease of shell oscillations with increasing temperature, due to

the temperature factor Q(tnT/~), Eq. (25), is clearly seen. The critical temperature
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Fig. 4. Moment of inertia δΘx (23), (25)–(31) in units ~/ω0 as function of the particle number,
N1/3, at temperatures T = 0.1 and 0.2 (in units ~ω0); EQ thin dashed curves present the EQ
orbit contribution for temperature T = 0.1, and EQ thick dashed is the EQ orbit term for T = 0.2;
other notations are the same as in Figs. 2 and 3.
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for a disappearance of shell effects in the MI is found,10,16 for prolate deformations

(η > 1) and particle numbers N ∼ 100 − 200, approximately at Tcr = ~ωEQ/π ∼
~ω0/π ≈ 2 − 3 MeV just as for δF . The particle-number dependence of the shell

corrections δΘz to Θz (alignment) in Eqs. (10) and (23) is similar to that of δΘx

because of their relations, δΘz ∝ δΘx ∝ δF .

5. Conclusion

We derived the shell correction components δΘz and δΘx (alignment and perpen-

dicular rotation) of the moment of inertia in terms of free-energy shell correction

δF within the nonperturbative extended POT which is exact for a HO potential.

For the harmonic oscillator potential we extended to the finite temperature case the

Zelevinsky derivation of the non-adiabatic MI for any rotation frequency. For the de-

formed HO potential we found a perfect agreement between semiclassical POT and

quantum results for the free-energy δF , and the MI shell corrections δΘx at several

critical deformations and temperatures. For larger temperatures we show that the

short EQ orbits are dominant. For small temperatures one observes a remarkable

interference of the short 3D and EQ orbits in the superdeformed region. An expo-

nential decrease of all shell corrections with increasing temperature is observed, as

expected.
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