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1Kazan (Volga Region) Federal University, 420008, Kremlevskay 18, Kazan, Russia 
2Kazan State Power Engineering University, 420066, Krasnosel’skay 51, Kazan, 
Russia 

e-mail: airat.khamzin@rambler.ru 

Abstract. NMR line shape of isolated spin clusters in moving nanocontainers with self-similar 
correlation law was calculated. It was shown that taking into account self-similarity in 
stochastic dynamics of pores leads to new shapes of NMR lines which differ from traditional 
shapes of Gauss and Lorentz types. Fractal dimension of spatial-temporal ensemble can serve 
as convenient fitting parameter for experimental data interpretation. 

1. Introduction 
In last decade one can see sharp increase of interest to study materials with nanometer pores and 

there are two reasons for it. In the first place synthesis of materials with pores with dimensions of 
several nanometers is the part of nanotechnology projects along with synthesis of nanoparticles. 
Laboratory research directed to obtaining homogeneous pores is conditioned by dependence of porous 
material properties from dimensions, shape and dimension distribution of pores [1]. For example, 
materials with ordered pores in the form of nanotubes (zeolite, aluminum silicates and so on) with 
constant section of tube mouth serve as molecular sieves for separation of mixture of gases molecules 
by their dimensions. Zeolite microcontainers are used as shells for dye molecules in dye lasers, as 
vessels for gases, electrolytes, as containers for toxic molecules of contrast medium for magnetic-
resonance tomography and so on. In all cases nanocontainers affect the operation of the whole system 
container + filling. In the second place progress in the field of the nanotechnology have lead to the 
appearance of the spin physics of nanostructures and particularly to NMR spectroscopy of the gases in 
nanocavity [2]. High resolution of the NMR spectra and possibility of the precise analytic description 
of the NMR line shapes of the gases with molecules with nuclear spins in nanocavities [3] allow to get 
from experimental data the information about structure and dynamics of the nanocontainers 
investigated [3, 4]. 

Nanometer range of measurements opens the world of new material properties [5-9]. In 
comparison with bulk solid substance there are changes in parameters of crystal lattice and atomic 
dynamics, thermal and electronic properties; magnetic properties is changed, magnetic clusters 
become one-dimensional, for several metals increase and even appear magnetic moments on atom, 
abrupt magnetic phase transitions are observed and superparamagnetism occurs. All these effects have 
dimension character and strongly depend on nanocluster surface state, interactions between clusters 
and interaction of clusters with matrix. The properties of the isolated clusters differ from properties of 
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the clusters that are forming nanosystems. Weakly interacting or isolated nanoclusters can be obtained 
in the form molecular clusters in gas-phase reactions by means of laser induced evaporation with 
consequent study in time-of-flight mass spectrometer and with application of photoelectron 
spectroscopy (see for example [11]), or by means of matrix isolation at solid-state and colloidal 
synthesis under condition of the weak interaction of clusters with matrix. Interactions between clusters 
and interactions of clusters with matrix allow not only change the properties of isolated clusters but 
also create complex crystal and supramolecular structures in which clusters play role of the atoms like 
regular crystal. 

Success of analytic calculation of the NMR spectra of the gases and nanoclusters with fast 
configuration rebuilding in nanocavities was due to presence in system the small adiabatic parameter 

/ 1m fε = τ τ << , where mτ  - characteristic time of changing the spin-spin interactions of the particles 
as a result of the fast molecular motions in gas or fast configuration rebuilding of the cluster, fτ  - 
characteristic time of the spin magnetization flip of the particle as a result of the interaction with 
nearest neighborhood spin (coincide with flip-flop transition time). As a result with accuracy ε  cluster 
spin dynamics with spin ½  in nanocavities on time interval 

 m ftτ << Δ << τ  (1) 

is described by effective Hamiltonian H (see formula (2) of the first section) with space-independent 
effective spin-spin couplings. It is commonly known that main difficulty of the consecutive statistical 
calculation in big space-extended systems is the absence small adiabatic parameter. In such a case 
usually one have to use model Hamiltonians, the field of application of which is determined by 
comparison with results of sophisticated numerical calculations from first principles and also with 
results of the experiments. Contrary to that space-extended systems in which modeling linked with 
complicated accounting spatial-dependent interactions between spins at arbitrary values of coupling 
constants the spin dynamics and also thermodynamics with Hamiltonian (2) in limited nanocavities is 
actually precise and can be studied as much as possible in detail by analytic methods. 
 In papers [10, 11] with the help of the statistical Hamiltonian (2) the process of polarization 
transfer between nuclei in nanocavity is studied. The main result of this investigation was 
establishment of the fact that polarization transfer is nonergodic process. In paper [3] the method of 
the NMR line shape calculation of the gas of the spin bearing molecules in movable nanocontainers 
(described by Hamiltonian (2)) was developed. Taking into account fluctuation in time of the 
interdipolar bond constant the authors of this work for different time scales have obtained analytic 
expressions for line shape which differ from traditional Gauss or Lorentz dependencies. Particularly 
the line shape can have logarithmic singularity at 0ω→  and exponential decay on the tails. Singular 
behavior of the line shape can serve as recipe for finding the map of the angular distribution of the 
different ellipsoidal cavities. 
 Beginning with work [12] and then in works [13, 14] the authors offer to use model (2), which 
get the name of the model of the equal spin-spin interactions (ESSI), for description of the 
magnetoactive nanoclusters properties. For adequate description in the frame of the Hamiltonian (2) it 
is essential the presence in the system the small adiabatic parameter. Therefore it is necessary to 
consider clusters that are contained in containers (nanoclusters with matrix isolation) that can be 
presented by the pores with nanometer size. Under the influence of the container or due to any internal 
physicochemical features nanocluster can suffer fast configuration rebuilding (during time m fτ << τ ). 

As an example one can give molecule bullvalene ( 10 10C H ) which (due to bond fluctuation) can suffer 
degenerate regrouping more than million times with the rate of the reorientation 1010 Hz   ( 1010m

−τ �  
sec) [15]. In paper [13] the thermodynamics of this model was studied in detail. Analysis of the 
thermodynamic properties of the model ESSI have revealed several specific features in them. 
Particularly it was shown that in finite spin system described by the model ESSI one can observe 
topological excitations (solitons) which firstly condition absence of the long-range order in the system 
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and secondly form anomalous behavior of the heat capacity at low temperatures (appearance of the 
additional low temperature peak). Anomalous behavior of the heat capacity of the model is connected 
with appearance of the spin gap in system considered. The presence of the spin gap in the spectrum of 
the magnetic excitations leads also to specific features in magnetic properties of the model [14], 
notably nonmonotonic behavior of the susceptibility and presence fractional plateau in field 
dependence of the magnetization. 

In this work authors set the problem of the theory construction for NMR line inhomogeneous 
broadening of the isolated spin clusters in moving nanocontainers with self-similar correlation law. 
Description of the hierarchical (self-similar)  structure of the medium and processes occurring in it is 
the crucial task at present [see, for example, 16-18 and their references]. Taking into account the self-
similar character of the kinetic processes leads to fractional power behavior of the many time 
characteristics of the system. Particularly taking into account self-similarity in dielectric relaxation 
processes leads to non-exponential (fractional power) character of the time dependence for relaxation 
function of the macroscopic dipole moment of the system [19, 20], that agree with experimental data 
for frequency dielectric spectra.  

2. NMR line shape of clusters in nanocontainers with time-dependent volume 
Let us consider systems (clusters) of n spins ½, that are enclosed in moving nanocontainers in 

external magnetic field B. On time interval tΔ  (1) the effective spin dynamics is described by time-
dependent averaged Hamiltonian 

 
( )( )2 22

1 2 1 2
1 ( )( ) ( ) ( ) ( ( ) 2 ( ))
2 2 8

z z A t nH t I A t A t I I A t A t= −ω⋅ − − − + +
, (2) 

where Bω = γ  ( γ  - gyromagnetic ratio for protons), nuclear spins are given by spin operators fI α , 

1,...,f n= , ( , ,x y zα = ), operators 
1

n
ff

I Iα α
=

= ∑  determine projections of total spin operator on 

, ,x y z -axes, 1,2 ( )A t  - time-dependent averaged constants of longitudinal and transversal spin-spin 
interaction. Time dependence of spin-spin interaction constants is determined by dynamics of 
nanoccontainer’s geometrical parameters (volume, shape, orientation with respect to external field  
and others). The square of total nuclear spin operator has the form ( )2 2/ 2 ( )zI I I I I I+ − − += + + .  

Line shape is determined as Fourier transform of free induction decay (FID), which in high-
temperature limit has the form [21, 22] 

 
( )
( )

Sp ( )
( )

Sp

I t I
G t

I I

+ −

+ −
= . (3) 

Time dependence of operator ( ) itH itHI t e I e+ + −=  in Heisenberg representation is determined easily 
from motion equation 

 1 2
( ) [ , ] ( ( ) ( ))( 1/ 2)zdI t i H I i A t A t I I

dt

+
+ += = − − −  (4) 

and has the appearance 

 ( )( )( ) exp ( ) 1/ 2 (0)zI t i t I I+ += − ϕ − , (5) 

where  

 1 2
0

( ) ( ( ) ( ))
t

t A t A t dt′ ′ ′ϕ = −∫ . (6) 
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For calculation of FID ( )G t  let’s represent it in the form ( ) ( ) / (0)G t R t R= , where 
( )( )( ) 1/ 2( ) Sp

zi t IR t e I I− ϕ − + −= . So long as Hamiltonian (2) eigenvalues are known 

 ( ) 2 2
1 2 1 2

1 ( )( ) ( ) ( ) ( 1) ( ( ) 2 ( ))
2 2 8ms

A t nE t A t A t m s s A t A t= − − − + + + , (7) 

where min ,..., / 2s s n=  ( min 1/ 2s =  for odd particle quantity n and min 0s =   for even particle quantity n  
in system), ,...,m s s= − , the function ( )R t  can be expressed in the form 

 
min

/ 2
( )(1/ 2 )( ) ( , ) ( )( 1)

n s
i t m

s s m s

R t g N s s m s m e ϕ −

= =−

= + − +∑ ∑ , (8) 

where factor 

 
12 1( , )

/ 21
nsg n s

n sn
+⎛ ⎞+

= ⋅ ⎜ ⎟−+ ⎝ ⎠  (9) 

determines the number of grouping ways of n spins ½ into total spin s. Taking into account formulas 

 ( )
( )(1/ 2 )

3

1 ( 1)sin ( ) sin( 1) ( )( )( 1)
2 sin ( ) / 2

s
i t m

m s

s s t s s ts m s m e
t

⋅ϕ −

=−

+ ϕ − + ϕ
+ − + =

ϕ∑ , (10) 

 ( )min

1/ 2

3

1 ( 1)sin ( ) sin( 1) ( ) ( )( , ) 2 cos
2 sin ( ) / 2 2

nn
n

s s

s s t s s t tg n s n
t

−

=

+ ϕ − + ϕ ϕ⎛ ⎞= ⎜ ⎟ϕ ⎝ ⎠
∑ , (11) 

let us represent ( )R t  in the form 

 

1( )( ) 2 cos
2

n
n tR t n

−ϕ⎛ ⎞= ⎜ ⎟
⎝ ⎠ . (12) 

As a result the expression for FID (3) is determined as 

 

1( )( ) cos
2

ntG t
−ϕ⎛ ⎞= ⎜ ⎟

⎝ ⎠ .  (13) 

On time scale of NMR observation 4
nmr 10 ct t −≤ ∼  we have 210iA t −≤ , then ( ) 1tϕ <<  and FID ( )G t  

for large numbers of spins n in nanocontainers transforms to the form 

 
2( 1) ln cos( ( ) / 2) ( ) / 8( ) n t n tG t e e− ϕ − ϕ= � . (14) 

FID ( )G t  (14) depends on constants ( )iA t  as internal parameters of function ( )tϕ  (6). Variation 
of the functions ( )iA t  leads to large variety of NMR line shape models, which mainly form two large 
groups: (a) homogeneous line broadening models and (b) inhomogeneous line broadening models [23, 
24].  

Nanosized containers are sensitive to the environment fluctuations, so constants ( )iA t  undergo 
fluctuations 

( ) ( )i i iA t A A t= + δ , (15) 

where fluctuation ( )iA tδ  we will characterize by two moments 
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 ( ) 0iA t< δ >= , 1 2 1 2( ) ( ) ( )i j i j ijA t A t A A K t t< δ δ >=< δ δ > − , (16) 

( )ijK t  designates correlation function, which, for example, can have appearance ( ) exp( / )cK t t= − τ , 

cτ  - correlation time. Averaging the function ( )G t  with respect to Gauss fluctuations ( )iA tδ  leads to 
the next result [3]  

 ( )G t =

2 2
1 2( )exp

8(1 ( ) / 2)
1 ( ) / 2

A A nt
nC t

nC t

⎛ ⎞−
−⎜ ⎟+⎝ ⎠
+ , (17) 

where 

 
2 2
1 11 2 22 1 2 12( ) (0) ( ) ( ) ( ) 2 ( )C t t A M t A M t A A M t=< δϕ δϕ >=< δ > + < δ > − < δ δ > , (18) 

 
0

( ) ( ) ( )
t

ij ijM t t t K t dt′ ′ ′= −∫ . (19) 

Introducing designations 

 
1

2

1A
A

− = δ , 
i j

ij
i j

A A
A A

< δ δ >
= α , 22

n Aν =  (20) 

and taking into account (18), we transform expression for FID (17) to the form 

 
i

i

2 2 2

2

2

exp
4(1 ( ))( )

1 ( )

t
C tG t

C t

⎛ ⎞δ γ−⎜ ⎟+ ν⎝ ⎠=
+ ν , (21) 

where 

 
i 2

11 11 22 22 12 12( ) (1 ) ( ) ( ) 2(1 ) ( )C t M t M t M t= + δ α + α − + δ α . (22) 

In the case of fluctuation absence ( 0ijα = ) the line shape 

 
0

1( ) ( )cosJ G t tdt
∞

ω = ω
π ∫ , (23) 

has Gauss form 2 2 2( ) exp( / ) /J ω = −ω δ ν δν π . Fluctuations of nanocavity lead to broadening of the 
line shape. For demonstration of the precise calculations of the line shape ( )J ω  (following the work 
[3]) let’s choose correlation function in the form  ( ) exp( / )ii cK t t= − τ  ( 12 ( ) 0K t = ). This choice of 
correlation function form leads to the next expression for ( )iiM t  

 ( )2( ) exp( / ) / 1ii c c cM t t t= τ − τ + τ − . (24) 

Let’s consider time fluctuations on two different time scales. When 2 2 1c iAτ < δ ><<  function ( )iiM t  
has the appearance ( )ii cM t t= τ  for time ct >> τ , which leads equation (21) to the form 

  
2 2( ) exp( /(4 )) / 1c cG t t t= −δ γτ + γτ ν , (25) 
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where 2
11 22(1 )γ = + δ α + α , and Fourier transformation of this expression gives next presentation for 

line shape [25] 

 
2 2 1

2

1( ) Re erfc( ) , (2 ) ( )
z

c c
c

eJ z z i
z

− −⎛ ⎞
ω = = γτ ν + ω γτ ν⎜ ⎟

γ πτ ν ⎝ ⎠ . (26) 

Function ( )J ω  (26) has bell-shaped profile with intermediate Lorentz asymptotic behavior 
2 2( ) / ( )J ω = Γ π Γ + ω , where 1(4 )c

−Γ = γτ  (upon 0cτ → ). On high frequencies (ω→∞ ) the line 
shape has next asymptotic behavior 

 
2 2

429( )
16 c

n AJ −δ γ
ω ω

πτ
∼ . (27) 

In the case 2 2 1c iAτ < δ >>>  function 2( ) / 2iiM t t=  for 0 ct≤ ≤ τ →∞ . Therefore FID is represented in 
the form 

  
2 2 2( ) exp( / 2 ) / 1 / 2G t t= −δ γ + γν . (28) 

As a result for line shape we have next expression [3] 

 

2

2

0 2

exp( / 2 ) 2 2ln ( ) , 0,
exp( / 2 ) 2 2( )

exp( / 2 ) 1 2exp , .
2

O

J K

⎧ ⎡ ⎤⎛ ⎞−δ λ ω
⎪ − + ω ω→⎢ ⎥⎜ ⎟⎜ ⎟πν γ ν γ⎪ ⎢ ⎥⎛ ⎞ ⎝ ⎠−δ γ ω ⎣ ⎦⎪ω = =⎜ ⎟ ⎨⎜ ⎟πν γ ν γ ⎛ ⎞−δ γ ω⎪⎝ ⎠ − ω→∞⎜ ⎟⎪ ⎜ ⎟ω ν γπν γ ⎝ ⎠⎪⎩

.(29) 

In such a way this examples demonstratively proved wide applicability general formula (13), from 
which one can get different expressions for line shape under the assumption that random fluctuations 
have Gauss character. 

3. The line shape of the clusters with self-similar correlation law of nanocontainers 
In previous section we have shown calculation of the FID and line shape of spin clusters in 

fluctuating nanocavities with Gauss stochastic dynamics. Gauss ensemble of disordered containers is 
characterized by correlation time cτ , changing of which leads to different line shapes.  

According to recent ideas many experimental results can be described by entering conception 
about distribution of the correlation time. Taking into account this conception let us consider function 
of the correlation time distribution ( )cg τ  and average function ( , )cM t τ  (19) with this distribution. As 
a result we get average (effective) expression for this function  

 ( ) ( , ) ( )c c cM t M t g d= τ τ τ∫ . (30) 

The simplest way to enter distribution function ( )cg τ  is the next one. Let's divide set of 
nanocontainers (that form sample) on several groups, containing lN  nanocontainers with characteristic 
correlation time clτ . We assume that 11 22 12( ) ( ) ( ), ( ) 0M t M t M t M t= = = .  The expression for ( )cg τ  
can be described by the formula 

 ( ) ( )l
c c cl

l

Ng
N

τ = δ τ − τ∑ , (31) 
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where N – the number of pores in the sample. As a result the expression for averaged function ( )M t  
of sample will accept the form 

 ( ) ( , )l
cl

l

NM t M t
N

= τ∑ . (32) 

In this work we propose self-similar character of container’s dynamics. Therefore distributions of 
numbers lN  and set of correlation times  clτ  will obey self-similarity conditions [19, 20] 

0
l

lN N b= , 0
l

cl cτ = τ ξ  ( , 1, 0 1)l L b−∞ < ≤ > < ξ < .   (34) 
From formula (24) one can see, that function ( , )clM t τ  has structure 2( , ) ( / )cl cl clM t f tτ = τ τ . As a 
result of the assumptions made the expression for effective memory function (32) will have the form 

 
2 2

0( ) ( ) ( )
L

l l
c

l
M c b f −

=−∞

θ = τ ξ θξ∑ , (36) 

where 0 /c N N= , 0/ ctθ = τ . For calculation of the sum (36) it is convenient to realize Mellin 
transform. Let’s assume for definiteness that correlation function ( )K t  has form ( )( ) exp / cK t t= − τ , 
then ( ) 1f e−θθ = + θ − . Mellin transform of the expression (36) leads to the next result 

 
2 (2 )

2 (2 ) 0
0 (2 )

( )( ) ( )
1

d s LL
l d s c

c d s
l

c ss c s
− +

− +
− − +

=−∞

τ Γ ξ
= τ Γ ξ =

− ξ∑M ,  2 Re (2 )s d− < < − − . (37) 

Here ln / ln(1/ ) 0d b= ξ > , ( )sM  – Mellin transform of the function ( )M θ , ( )sΓ  - gamma-function, 

and also we use formula 
MT

1 ( ), 2 Re 1e s s−θ + θ − = Γ − < γ = < − . Parameter d plays role of "dynamic" 
fractal dimension (i.e. dimension which connects geometrical b  and dynamical ξ  parameters of the 
system). 

Making inverse Mellin transform in (37) we will get 

 
2 ( 2 )IMT

0
( 2 )

( )( ) ( )
2 1

i s d L s
c

s d
i

c ss M ds
i

γ+ ∞ + − −

− + −
γ− ∞

τ Γ ξ θ
= θ =

π − ξ∫M . (38) 

For calculation of the Mellin-Barnes integral in the right part of (38) we enclose integration line on 
contour by right half of circle (contour iL∞ ) and by Cauchy theorem we find 

 
( 2 )

2
0 ( 2 )

( )( ) Res
1k

k i

s d L s

c s dss L

sM c
∞

+ − −

− + −
∈

⎡ ⎤Γ ξ θ
θ = − τ ⎢ ⎥− ξ⎣ ⎦

∑ , (39) 

where ks  – poles of function (37). Function ( )sM  (37) has two groups of poles 

 
2(2 ) , , 0, 1, 2,...

ln(1/ )ks d i k kπ′ = − − + Ω Ω = = ± ±
ξ , (40а) 

 , 0,1,2,...ks k k′′ = − = . (40б) 

We take into account that inside of chosen contour there are all poles of the group (40а) and only poles 
0 10, 1s s′′ ′′= = −  of the group (40б) and 0 1d< < . As a result from (39) we will get 

 
2 2 (2 ) (1 )

20
0 (2 ) (1 )

ln( )
ln(1/ ) ln(1/ ) 1 1

d d L d L
c

d c d d

cM w c
− − −

− − − −

⎛ ⎞⎛ ⎞τ θ θ ξ ξ θ
θ = + τ − +⎜ ⎟⎜ ⎟ξ ξ − ξ − ξ⎝ ⎠ ⎝ ⎠ , (41) 
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where 

 [ ]( ) ( (2 ) )exp 2 ,d
k

w z d i k ikx
∞

=−∞

= Γ − − + Ω π∑  (42) 

- periodic function with period 1. In (41) we took into account, that Res ( ) ( 1) / !k

k
s k

−
Γ = − . So long as 

we consider that 1L�  then expression in parentheses (41) is small and we neglect it. As a result 
expression for averaged function ( )M θ  take the form 

 
2 2

0 ln( )
ln(1/ ) ln(1/ )

d
c

d
cM w

− ⎛ ⎞τ θ θ
θ = ⎜ ⎟ξ ξ⎝ ⎠ . (43) 

So long as ( (2 ) ) ( (2 ))d i k dΓ − − + Ω Γ − −�  at 0k ≠  then in present work we neglect the presence of 
log-periodic oscillations. Investigation of the influence of the log-periodic oscillations on line shape 
will be the problem of the next work. Thus function  ( )M θ  will take next final form 

 
2 2

0 ( 2)( )
ln(1/ )

d
cc dM

−τ Γ − θ
θ =

ξ . (44) 

As a result of substitution of the expression (45) in (21) we will get expression for FID with 
account of self-similar character of correlations in nanocavities motion 

 
k

2 2 2

2 2

2 2

exp
4(1 ( ) )

( )
1 ( )

d

d

t
a d t

G t
a d t

−

−

⎛ ⎞δ ν
−⎜ ⎟+ ν γ⎝ ⎠=
+ ν γ , (45) 

where 0( ) ( 2) / ln(1/ )d
ca d c d= τ Γ − ξ . In case when 2( ) 1ia d A< δ >>>  expression (45) will take the form 

 
k

2

2 2

exp
4 ( )

( )
1 ( )

d

d

t
a d

G t
a d t −

⎛ ⎞δ
−⎜ ⎟γ⎝ ⎠

+ ν γ
� . (46) 

On figure 1 there are time dependences of the FID for different values of fractal dimension d at 
next values of parameters: 0 0,004cτ =  с, α =100, 0 10cγτ = , 0,5δ = , 0,01c = , 0,1ξ =  (fig. 1a) and 

0,8ξ =  (fig. 1b). From this figure one can see that time dependence of the FID considerably depends 
on self-similarity parameters ξ and d, changing of which leads to change of the decay rate. 

On figure 2 there are plots of line shape (23) for different values of fractal dimension d (parameter 
values corresponds to figure 1). From this figure one can see that line shape considerably changes at 
the edges of possible values interval of fractal dimension d. 
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Figure 1. The free induction decay at different values of the fractal dimension d. The 2D plots 
are constructed at the following values of the parameters: 0 0,004cτ =  с, α =100, 0 10cγτ = , 

0,5δ = , 0,01c = , 0,1ξ =  (a) and 0,8ξ =  (b). 
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Figure 2. The line shape at different values of the fractal dimension d. The plot is constructed at 
the following values of the parameters: 0 0,004cτ =  с, α =100, 0 10cγτ = , 0,5δ = , 

0,01c = , 0,1ξ =  (a) and 0,8ξ =  (b). 
 

4. Conclusion 
The aim of the present work was development of the theory of NMR line shape of isolated in 

fluctuating nanopores magnetoactive clusters with self-similar Gauss stochastic dynamics.  The 
possibility of precise analytic description of the NMR line shape of isolated nanoclusters with fast 
configuration rebuilding opens the way for subsequent development of the theory to bring it closer to 
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real description of the physical systems, notably to take into account the self-similar character of pores 
dynamics.  

In the frame of the model suggested and related to the self-similar hierarchy of the correlation 
times of fluctuations in nanocontainers it is shown how to take into account the scaling effects 
associated with collective dynamics of pores. The self-similar character of movement of 
nanocontainers leads to new analytical description of the NMR line shapes that are differed from the 
conventional Gaussian and Lorentz forms.The free decay and the corresponding line shape depends on 
the fractal dimension of the space-time self-similar ensemble and this important characteristic can 
serve as a convenient and clear understandable fitting parameter in interpretation of experimental data 
associated with NMR phenomena in disordered media.  
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