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We briefly discuss the recent claims that the ordinary KP/Toda integrability, which is a characteristic
property of ordinary eigenvalue matrix models, persists also for the Dijkgraaf–Vafa (DV) partition
functions and for the refined topological vertex. We emphasize that in both cases what is meant is
a particular representation of partition functions: a peculiar sum over all DV phases in the first case
and hiding the deformation parameters in a sophisticated potential in the second case, i.e. essentially a
reformulation of some questions in the new theory in the language of the old one. It is at best obscure
if this treatment can be made consistent with the AGT relations and even with the quantization of the
underlying integrable systems in the Nekrasov–Shatashvili limit, which seem to require a full-scale β-
deformation of individual DV partition functions. Thus, it is unclear if the story of integrability is indeed
closed by these recent considerations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays the abstract matrix model theory [1] is once again on
the rise. One of the reasons for that is that the reformulation of the
Virasoro constraints or loop equations [2] in terms of the AMM/EO
topological recursion [3] allowed to reveal hidden matrix model
structures in somewhat unexpected areas like Seiberg–Witten the-
ory and conformal models (through the AGT relations [4]) [5] and
knots [6]. This poses the natural questions of how the other prop-
erties of matrix models express themselves in these circumstances.
The first in the line is, of course, integrability: a mysterious fact
that exact (non-perturbative) partition functions in quantum field
theory satisfy bilinear relations (while usual Ward identities, like
Virasoro constraints, provide only linear relations) [8].

The ordinary partition functions of eigenvalue matrix models
are typically the τ -functions of the KP/Toda type hierarchies [1,7].
Among other things, this fact is reflected in existence of the Harer–
Zagier recursion [9], a much more powerful than the ordinary
AMM/EO one. However, this property is lost (or, better, modified
in a still unknown way) in the two important deviations: after
the β-deformation [10] and in the Dijkgraaf–Vafa phases [11]. Re-
cently there were claims to the opposite: that integrable structure
survives, moreover, in both cases and presumably even in the com-
bination of two. The goal of this Letter is to briefly comment
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on this kind of statements. We choose two particular examples:
the papers [12] on β-deformation and [13] on the Dijkgraaf–Vafa
phases. In both cases the claim seems to reduce just to the state-
ment that deformed model can be considered as a particular case
of the non-deformed one, thus, integrability of the ordinary Her-
mitian matrix model implies bilinear relations for the deformed
ones. This is, of course, being a correct statement does not provide
any new interesting implications. In particular, this does not help
to construct any efficient Harer–Zagier recursion, which would not
be just a series in powers of (β − 1) or a result of peculiar sum-
mation over all the Dijkgraaf–Vafa phases. We remind [14] that
resolution of this problem could provide a constructive interpreta-
tion of the AGT relations as the Hubbard–Stratonovich duality [15]
in the doubly-quantized Seiberg–Witten theory (i.e. that in the Ω-
background with the both non-zero deformation parameters1).

2. Integrability of Hermitian matrix model

The old statement [18,1,7] is that the integral

ZN = 1

N!
N∏

i=1

∫
dμi eV (μi)�2(μ) = det

i j
Ci+ j (1)

where Van-der-Monde determinant �(μ) = ∏
i< j(μi − μ j) =

deti j μ
j−1
i and the moment matrix

1 When only one ε is non-vanishing, this corresponds to an ordinary quantization
[16] of the underlying integrable system [17].
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Ci =
∫

dμ eV (μ)μi−1 ≡ 〈
μi−1〉 (2)

For V (μ) = V 0(μ) + ∑∞
k=0 tkμ

k one additionally has

∂Ci

∂t j
= Ci+ j (3)

and the determinant representation (1) along with this relation is
enough to demonstrate that ZN satisfies the Hirota bilinear equa-
tions for the Toda chain τ -function, which, in turn, reduce to an
infinite hierarchy of differential equations, starting from2

∂2 log ZN

∂t2
1

= ZN+1 ZN−1

Z 2
N

(4)

Thus, one concludes that

ZN = τ {N; t} (5)

What is important, these properties are independent of the choice
of the potential V 0(μ) and of the integration contours in the def-
inition of Ci (one may say in a word that they do not depend on
the choice of measure).

Note that the N! factor in the definition of ZN is essential: for
the Gaussian potential case, V (μ) = − 1

2g μ2 + t1μ

ZN = 1

N!V U (N)

∫
N×N

e− tr V (M) dM

= (2π)N/2 gN2/2

(
N−1∏
k=1

k!
)

exp

(
gNt2

1

2

)
(6)

and

∂2 log ZN

∂t2
1

= gN = ZN+1 ZN−1

Z 2
N

(7)

The next Toda chain equation is the same as the first equation in
KP hierarchy:

3
(
ττ22 − τ 2

2

) − 4(ττ13 − τ1τ3)

+ (
ττ1111 − 4τ1τ111 + 3τ 2

11

) = 0 (8)

where the index i refers to the derivatives w.r.t. ti . One easily
checks that the Gaussian Hermitian model satisfies this at the
point {all tk = 0} using formulas from [20]. In these formulas
we preserve also the parameter β , which would appear in the
power of Van-der-Monde determinant in the eigenvalue represen-
tation (1), and put V (μ) = −μ2/2 + ∑∞

k=0 tkμ
k . Then,

2 A more generic partition function [18,7] ZN = det Cij depending on two sets of
times {t} and {t̄} is described by the two-dimensional Toda lattice hierarchy with
the first equation

∂2 log Z N

∂t1∂ t̄1
= Z N+1 Z N−1

Z 2
N

provided Cij satisfies

∂Cij

∂tk
= Ci+k, j ,

∂Cij

∂ t̄k
= Ci, j+k

In matrix models, it can be realized by an average Cij = 〈xi y j〉, which is the case
for multi-matrix models. Similarly, in the unitary matrix model case Cij = 〈xi− j〉
and the partition function is a special reduction of the two-dimensional Toda lat-
tice hierarchy or, equivalently and even more naturally, of the two-component Toda
hierarchy [19].
τ1 = τ3 = τ111 = 0,

τ2 = (
βN2 − (β − 1)N

)
τ ,

τ11 = Nτ ,

τ22 = (
β2N4 − 2β(β − 1)N3 + (

β2 + 1
)
N2 − 2(β − 1)N

)
τ ,

τ13 = 3
(
βN2 − (β − 1)N

)
τ (9)

Using these formulas one deduces that the l.h.s. of (8) equals
−6(β − 1)N(N − 1) and vanishes when β = 1.

3. Sum over Dijkgraaf–Vafa phases

The Dijkgraaf–Vafa phases emerge when the background poten-
tial V 0(μ) possesses several different extrema at points μ = αr ,
r = 1, . . . , s. Then the DV partition function is defined as a genus
expansion around the spectral curve, defined as a resolution y2 =
(V ′

0(z))2 + f (z) of y2 = (V ′
0(z))2 and depending on the s ex-

tra moduli, hidden in the polynomial f (z) of degree (s − 1). As
demonstrated in great detail in [21,22,20] this definition is actu-
ally equivalent to choosing s different integration contours Kr , so
that Nr out of N eigenvalues μi are integrated along Kr . These
Nr serve as the s additional moduli, if the answer is analytically
continued from the integer values of Nr to arbitrary ones. Thus,
one can define the Dijkgraaf–Vafa partition function Z N1,...,Ns {tk}
as a matrix (or, better to say, eigenvalue) model with s different
integration contours:

ZN1,...,Ns {tk} =
s∏

r=1

1

Nr !

(
Nr∏

i=1

∫
Kr

eV (μi) dμi

)
�2(μ) (10)

Now let us apply the determinant formula (1) to this case:

Ci =
s∑

r=1

eξr

∫
Kr

μi−1eV (μ) dμ (11)

with arbitrary parameters ξr (thus, the contour in (2) is given as
a formal sum of weighted contours,

∑s
r=1 eξr Kr ). Then, the Toda-

chain tau-function is given by

τ (�α, �ξ){tk} =
∑

N1,...,Ns

(
s∏

r=1

eNrξr

)
ZN1,...,Ns (�α){tk} (12)

One easily recognizes in this formula the sum (5.15) of Ref. [13].
To illustrate how the binomial coefficients are automatically

taken into account by the factorial in (10), we consider a very sim-
ple example of N = 2. For simplicity we also put ξi = 0. Then

τ (�α, �ξ){tk} = 1

2!
( ∫

K1

+
∫
K2

)2 2∏
i=1

dμi eV (μi)�2(μ)

= 1

2!
∫
K1

∫
K1

2∏
i=1

dμi eV (μi)�2(μ)

+ 1

1!1!
∫
K1

∫
K2

2∏
i=1

dμi eV (μi)�2(μ)

+ 1

2!
∫
K2

∫
K2

2∏
i=1

dμi eV (μi)�2(μ)

= Z2,0 + Z1,1 + Z0,2 (13)
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or, in terms of the determinant representation (the indices of the
averaging symbol 〈. . .〉 enumerate contours):

det
i j

Ci+ j = (〈
μ2〉

1 + 〈
μ2〉

2

)(〈1〉1 + 〈1〉2
) − (〈μ〉1 + 〈μ〉2

)2

= 1

2!
(
2
〈
μ2〉

1〈1〉1 − 2〈μ〉2
1

) + (〈
μ2〉

1〈1〉2

+ 〈
μ2〉

2〈1〉2 − 2〈μ〉1〈μ〉2
)

+ 1

2!
(
2
〈
μ2〉

2〈1〉2 − 2〈μ〉2
2

)
= 1

2!
∫
K1

∫
K1

dμ1 dμ2 eV (μ1)eV (μ2)(μ1 − μ2)
2

+ 1

1!1!
∫
K1

∫
K2

dμ1 dμ2 eV (μ1)eV (μ2)(μ1 − μ2)
2

+ 1

2!
∫
K2

∫
K2

dμ1 dμ2 eV (μ1)eV (μ2)(μ1 − μ2)
2

= Z2,0 + Z1,1 + Z0,2 (14)

It is quite an exercise to check that (12) made from explicit ex-
pression for the DV partition function Z �N (�α) does indeed satisfy
(4), (8) and all other equations of the Toda chain and KP hier-
archies, in all orders of the genus expansion. In fact, this check
is somewhat similar to checking that theta-functions satisfy these
equations, by directly using their series expansions rather than an-
alytical properties, what is known to be a tedious exercise. Still,
some attempts of such direct checks were made in [13]. We want
to emphasize that the general argument, that we just reminded
in this section, can be enough, provided one uses the demonstra-
tion of [21,22,20] that the Dijkgraaf–Vafa partition function Z �N (�α)

can be indeed represented as a result of integrating some different
eigenvalues along different integration contours.

At the same time, despite (12) is a τ -function almost trivially
due to (1), this sheds only some light on integrability properties of
DV partition functions ZN1,...,Ns . The claim is that these functions
are a kind of Fourier transform of the τ -function, but in a very
obscure kind of variables: in �ξ , which from the point of view of
integrable hierarchies describe some very non-explicit locus in the
Universal Grassmannian (the universal moduli space [23]). Even
interpretation of these ξ ’s in terms of Seiberg–Witten theory re-
mains obscure. Thus this result calls for much better understanding
before it can be considered as a resolution of the problem of inte-
grability of DV partition functions.

4. What would be the β-deformation of integrability theory?

The recently discovered powerful AGT relation [4] unifies [24]
the three kinds of quantities, which are a priori of a somewhat
different origin: the Nekrasov functions, conformal blocks and pe-
culiar β-ensembles of Dotsenko–Fateev or Penner type, also known
as “conformal matrix models”. There is little doubt that the ba-
sic underlying theory is that of the β-Selberg integrals, related
to character expansion into the Jack and MacDonald polynomials
for 4d and 5d theories respectively. A lot of these structures can
actually be seen already at the level of quantization of related inte-
grable systems, which is associated with the Nekrasov–Shatashvili
(ε2 = 0) limit of the full Ω-deformed Seiberg–Witten (SW) struc-
ture.

However, there is an interesting option to treat the deformed
SW structure as an ordinary one. This possibility is provided by
the fact that the ordinary SW equations
{
ai = ∮

Ai
Ω(z)

∂ F
∂ai

= ∮
Bi

Ω(z)
(15)

hold for the full prepotential F (a|ε1, ε2) with ε1, ε2 	= 0 and any
β = −ε2/ε1, only with a sophisticated ε-dependent SW differential
Ω(z|ε1, ε2) (which is actually a full, i.e. summed over all genera, 1-
point resolvent of the Dotsenko–Fateev β-ensemble, to be provided
by the yet unknown β-deformation of the Harer–Zagier recursion).

An intimately related observation [12] is that such a sophis-
ticated representation exists also for the refined topological ver-
tex [25], relevant to β-deformation of Chern–Simons theory, and
for the HOMFLY knot polynomials.

The problem is that such approaches hide all the relevant struc-
tures, which one wants to reveal in the β-deformation, in sophisti-
cated quantities like Ω(z) or a sophisticated matrix model poten-
tial V (z), and the problem is not resolved before the structure of
these quantities is fully understood.

Taking this to extreme, one may say that one can represent the
same quantity in two forms:∫

�2(λi) d̃μ(λi) =
∫

�2β(mi)dμ(mi) (16)

as ordinary matrix model and as a β-ensemble, with a relatively
simple measure dμ(mi) and a complicated measure d̃μ(λi). The
two sides of this relation imply the two different ways to switch on
the time-variables: insertion of

∏
i exp

∑
k(t̃kλ

k
i ) at the l.h.s. pro-

vides an ordinary τ -function of the KP/Toda type, while insertion
of

∏
i exp

∑
k(tkmk

i ) at the r.h.s. does not give rise to anything sat-
isfactory. The way to find an appropriate β-deformed version of
this exponential (and, more generally, of a (β,q)-exponential) at
the r.h.s. is exactly the problem of β-deformation of integrability
theory.

A very serious motivation for the study of relations like (16) is
that the two measures at the two sides of the equality are associ-
ated with different sets of symmetric functions: the Schur and Jack
polynomials respectively (and the MacDonald polynomials would
arise for the further q-deformed β-ensemble). The point is that
all these sets can be considered as different bases in the space
of symmetric functions and are therefore linearly related (through
the so called Kostka coefficients). This means, first, that correlation
functions in both representations should indeed by somehow re-
lated, after the character expansion technique is applied to express
them through these polynomials. Second, this makes the story
of [12] about the refined topological vertex especially interesting,
because in the associated theory of superpolynomials [26,27] it is
still unclear what is the preferred basis: that of the MacDonald, of
Schur or rather of the Hall–Littlewood polynomials [28]. Amusingly
a place is still not found there for the Jack polynomials, putting
under a big question the literal β-ensemble approach to topologi-
cal vertices (this is also illustrated by the failure to generalize the
Chern–Simons matrix model for torus HOMFLY polynomials to the
case of superpolynomials by switching from ordinary matrix mod-
els to β-ensembles [29]).

5. Conclusion

To conclude, we tried to argue that integrability properties of
β-deformed and weighted-averaged Dijkgraaf–Vafa partition func-
tions remain an important and deep problem, which is still far
from being solved. The results of [12] and [13] respectively, in this
direction are very important, but seem to reflect only straightfor-
ward consequences of those of Hermitian matrix model. In this
sense they do not provide any new non-trivial information about
above deformations. In particular, they do not yet help to gener-
alize the Harer–Zagier recursion and matrix model interpretation
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of the AGT relations and knot polynomials to the case of β 	= 1.
However, it also remains an open question, if any less trivial defor-
mations of integrability properties exist at all in these cases.
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