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NETS OF GRADED C*-ALGEBRAS OVER PARTIALLY
ORDERED SETS

© S. A. GRIGORYAN, E. V. LIPACHEVA, A. S. SITDIKOV

The paper deals with C*-algebras generated by a net of Hilbert spaces
over a partially ordered set. The family of those algebras constitutes a net
of C*-algebras over the same set. It is shown that every such an algebra
is graded by the first homotopy group of the partially ordered set. We
consider inductive systems of C*-algebras and their limits over maximal
directed subsets. We also study properties of morphisms for nets of Hilbert
spaces as well as nets of C*-algebras.

§1. Introduction

The paper is devoted to the construction and the study of nets consisting
of C*-algebras generated by nets of Hilbert spaces over partially ordered sets.
One of the directions in the applications of such nets is algebraic quantum
field theory. In a spacetime the family of all open bounded regions is a partially
ordered set under the inclusion relation [1, 2, 3]. One associates to these regions
the C*-algebras of local observables which can be measured in the pertinent
regions. The family of all those algebras indexed by the regions of a spacetime
is called a net of C*-algebras.

The main objects of the study in the paper are the local C*-algebras (see
§ 5) generated by a triple

(K7 Ha7 Vba)angK’

where K is a partially ordered set, H, is a Hilbert space and vy, : H, — Hp
is an isometric embedding. According to papers [4, 5, 6], we call that triple a
net of Hilbert spaces over K. The family of the C*-algebras constitutes a net
over the same set K. Each algebra in this net is graded by the first homotopy
group 71 (K) for the partially ordered set K.

Moreover, we introduce the notion of the corona for a net consisting of
the local C*-algebras. The algebras in the corona are called the quasi-local
algebras. It is shown that these algebras are also 7 (K)-graded.

Karoueswie caosa: C*-algebra, graded C™-algebra, partially ordered set, net of C*-
algebras, net of Hilbert spaces, path semigroup, the first homotopy group, inductive limit.
1



2 S. A. GRIGORYAN, E. V. LIPACHEVA, A. S. SITDIKOV

The motivation for our work comes from papers [4, 5, 6] in which the nets of
the C*-algebras of observables are studied for a curved spacetime and a space-
time manifold with specific topological features.

We have studied earlier the C*-algebras generated by representations of
ordered semigroups [7, 8, 9, 10, 11, 12|. The present paper is a continuation
of the study begun in the article [13|. There we dealt with the C*-algebra
generated by the path semigroup in a partially ordered set.

§2. Paths and loops on a partially ordered set

Let K be a partially ordered set with an order relation <, which is reflexive,
antisymmetric and transitive. Elements a and b are said to be comparable in
K, ifa < borb < a. The set K is said to be upward directed, if for any a,b € K
there exists ¢ € K such that a < cand b < c. L

Further, we define paths on K. Ordered pairs (b,a) for b < a and (b,a)
for b > a are called elementary paths on K. Here, the elements 01p = a and
Jop = b are called, respectively, the starting point and the ending point of
the elementary path. We define the reverse elementary paths s~' = (a,b) for
s = (b,a) and s~ = (a,b) for s = (b,a). A pair (a,a) = (a,a) = i, is called a
trivial path.

Throughout we consider sequences of elementary paths of the following form:

D= 8Sp*Sp_1%...%871,

where Jys;_1 = Ois; for i = 2,...,n. Here, the elements d;1p = 0151 and
Oop = Opsn are, respectively, the starting point and the ending point of the
sequence p. The reverse sequence defined as the sequence

=1 _ —1, —1 —1
D=8, %8, ¥...%x8,.

Extending the operation “x”, we define the multiplication operation for the
sequences of elementary paths p = s, *...% S, and § = sg_1 *...* s satisfying
the condition 015, = 01D = 0gq = OpSk_1 as follows: Dx G = Sy, % ...k Sp * Sp_1 *
Lok 8.

We denote by S the set of all sequences of elementary paths endowed with
the operation “x”. It is clear that the operation “x” is associative.
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Let us define an equivalence relation on the set S. To this end, for all elements
a,b,c € K such that a < b < ¢, we put

(a,b) * (b, ¢) ~ (a,c); (1)
(¢,b) x (b,a) ~ (c,a); (2)
(a,0) * (b, @) ~ ia; (3)
(b,a) * (a,b) ~ ip. (4)

It is worth noting that (1)—(4) imply the following equivalences:
(a,b) *ip ~ (a,b);
iq * (a,b) ~ (a,b);
(b,a) *xiq ~ (b,a
ip * (b,a) ~ (b, a);

lq ¥ 1g ~ ig.

~—

We put p ~ g, where p,g € S, if the sequence p can be obtained from the
sequence ¢ (and g from p) by means of a finite number of relations (1)—(4).

One can easily verify that the following properties are fulfilled in S:

1. for every sequence p € S with 9yp = a and 0,p = b the relations p~ L *p ~
iy, P*P ' ~ iy hold;

2. for every sequence p € S, with 9gp = a and 01p = b the relations i, * p ~
P ~ P * i hold.

Let p = [p] be an equivalence class containing a sequence of elementary
paths p. For equivalence classes p and g we define the multiplication operation

“x7 as follows: if 01p = 0pq then we set
prxq=[p+g ={5~p*7|5€S5}

Further, let us consider the quotient set of S by the equivalence relation. It
is obvious that the quotient set S/~ is a groupoid. Adding a formal symbol 0
and putting

px0=0, O0xp=0
for every p € S/~, one may turn the groupoid S/~ into a semigroup denoted
by
S=25/.u{o}.

Then for every p,q € S we have
_ {Lp*q], if p#£0, g #0 and 915 = A7,
p*xq=

0, otherwise.
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The semigroup S is called the path semigroup. An element p € S is called
a path from the point d1p = 1P to the point dyp = Oyp. Thus, we identify
all equivalent sequences of elementary paths. That equivalence class is called
a path on K.

An element p € S is called a loop in S if the equality dyp = 01p holds. For
a € K we denote by G, the set of all loops whose base point is a. The set G,
is a semigroup. For a € K we denote by G the set of all equivalence classes
of loops whose base point is a. In [13] it is shown G, is a subgroup in S with
the unit [i,] and other properties of G, and S are described. In particular, it
is proved that if K is an upward directed set then G, is trivial.

The set K is said to be connected provided that for every a,b € K there
exists a path p such that 9yp = a, O1p = b. It is shown in [13] that for
a connected set K the isomorphism G, = Gp holds whenever a,b € K. In
particular, the mapping oy, : G4 — G defined by the formula

oba(p) = [(b,a) * P (a,b)] (5)
is isomorphism, where a < b, p € p.

In what follows, we assume that the set K is connected.

The notion of the first homotopy (fundamental) group 71 (K) for a partially
ordered set K is given in [4, 6]. The group m(K) is a quotient set of the
set of all paths on K that start and end at the same point by the homotopy
equivalence relation. Two paths are said to be homotopy equivalent if one can
be obtained from the other by a finite number of elementary deformations (see
14, 6]).

Theorem 1. For every a € K there exists an isomorphism 71 (K) = G,.

Proof. To prove the theorem it is sufficient to show that the equivalence re-
lation given by formulas (1)—(4) coincides with the homotopy equivalence.

In [13] the authors show that if two paths are in the equivalence relation
defined by (1)—(4) then they are homotopy equivalent.

For the converse implication we note that the elementary paths (a,b) and

(b,a) are 1-simplices with the support b. Therefore every equivalence (1)—(4)
is an elementary deformation of paths. O

§3. Mappings and cycles on a Hilbert space
Let a net of Hilbert spaces

(K, Ha»’Vba)a<beK

over K be given. Here, H, is a Hilbert space with a basis {e%}>° ;, and

Voa : Ho — Hy,
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is an isometric embedding for a < b, which transforms the basis {e?}°° | into
the basis {e2}2° , and satisfies the equation

Yea = Yeb © Yoas

whenever a < b < c¢. If a = b then 3, is the identity mapping.

For every a € K we define the set S, = {p € S | dop = a}.

Further, let us consider the Hilbert space of all square summable complex-
valued functions on S,

2(8,) = {f SeoC | Y IfW)P < oo}

PES,

with the inner product given by

9)=Y_ f()g(p)

PES,

The family of functions {e,} g is an orthonormal basis in 12(S,). Here, the
equality e,(p’) = dp,, holds for p' € S,, where 0,y stands for the Kronecker
symbol.

Let us consider the space H = @ ¢ jc (Ha ® 12(S,)). For every pair a,b € K
satisfying the condition a < b we define the partial isometry x% : H — H as
follows:

Xo(h®ep) = Voalh) ® ey i h€ Ha and dop = a, P € p,
0, otherwise.
We note that the following inclusion holds:
Xo(Ha @ 12(Sa)) € Hy @ 12(Sy).

For the operator XZ the conjugate operator XZ* : 'H — H is defined by the
formula

I @ ej(ap)sp); if there exists b’ € H, such that
X (h®ey) = h = Yba(h') and dop = b, P € p;
0, otherwise.

Lemma 1. The following assertions hold.

(1) X5 = x§x% whenever a < b < c.

(2) x&* = xZ*xi* whenever a < b < ¢

(3) xb*x% = Iy, ® I, where Iy, ® I, : H — H, ®1*(S,) is a projection
(a surjection).

(4) Xoxb* = Py, ® Iy, where Py, @ I : H — Hy, ® 12(Sy) is a projection
(an ingection).
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Proof. (1) It follows from the equality Yo = Yep0Ype and the relation (¢, a)*p ~
(c,b)  (b,a) *P.

(2) Assume that the condition xg*(h ® ep) = h" ® e[(4,c)4p) 7# 0 holds. Then
we have h = e (h") = Yeb © Voa(h") = e (h'). Consequently, we obtain the
equalities

b*_ cx

Xa X" (h @ ep) = Xa" (W @ epoyep) = B @ €apyetvopm = B @ fa.cpmp

(3) For every element h ®e, € H, ®1%(S,) one has the equalities x2*x5(h ®
ep) = Xa" (Wa(h) @ e 03.50) = 1 ® €11, a3 = M O -

(4) Take an element h ® e, € H, ®1?(Sy). If the property x2x2*(h®e,) # 0

a

is fulfilled then one can easily see that the equality ngg*(h ®ep) =h®epis
valid. Hence, the inclusion x2x*(H, @ 12(Sy)) € Hy @ 12(S}p) holds. O

The set of isometries {Xg}a,beK,agb can be enlarged to the set {Xﬁ}ﬁeg as
follows. Take an arbitrary sequence of elementary paths

D= (agn,azn_l)l%—l % ...k (ag,ag)l2 * (ag, al)ll,

where I, = 0,1 and (ag41,a%)° = (akt1,ak), (apr1,ar)' = (ag41,a8), k =
1,...,2n — 1. Then we have

Xp = (X@2n=t)len=t (@) (yan)h,

where (xgr, )% = X3, (x@E ) =xak , k=1,...2n—1.

We note that the equality x3 = xz-1 holds.

The set {Xﬁ}ﬁeg is closed with respect to the multiplication operation:
XpXq = Xp+g provided that the condition 01p = 9yq holds.

The set

Hp ={h € Hop | xp(h ® eq) # 0 if doq = O1p}

is called the domain of the sequence p.

Obviously, the set Hy is a Hilbert space. It is worth noting that, in general,
we have the condition Hy # Hg for two distinct sequences p,g € S , which

are equivalent, i.e., p ~ @. For instance, H; = H, if p = (a,b) * (b,a) with

a < b, and Hg C H, for § = (a,c) * (¢,a) with ¢ < a. Here, the equivalences
P ~ i ~ q hold.

Thus, in general, one has the property x5 # xg for sequences satisfying the
conditions p ~ @, D # q.

Lemma 2. The following assertions hold:

(1) the operator x;, is the identity mapping on H, @ 12(S,);

(2) if p~q then xp(h ® es) = xg(h ® es) for every h € Hy N Hg and s such
that Oys = " p = G,
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(3) if p~ G and Yoo : Hy — Hy is an isomorphism for all a < b € K, then
the equality xp = xgq holds.

Proof. (1) It is obvious.

(2) It is enough to prove the assertion for equivalences (1)—(4).
To this end, we assume that a < b < ¢. Then the equivalence (a,b) * (b, c) ~
(a,c) holds. Take an element h ® es such that

XZ*XIC,*(h ®es)#0 and xS(h®es) #0.
It follows from item 2 of Lemma 1 that one has the equality
XUXE (h @ es) = XS (h @ es).

Item 1 of Lemma 1 implies the assertion for the equivalence (¢, b)*(b,a) ~ (¢, a).
Similarly, for equivalences (3) and (4) the assertion follows from items 3 and 4
of Lemma 1.

(3) It follows from (2) that equivalent deformations of the sequence p do not
change values at points of the space Hp,5. Those deformations only restrict or
extend the domain Hp of the sequence. Furthermore, if v, : H, — Hp is an
isomorphism whenever a < b € K, then we have the equalities Hy = Hg =
Hp,5. Consequently, one gets the equality x3 = X3, as required. O

Theorem 2. The mapping © : S — B(H) given by (p) = xp is a represen-
tation of (S,*) in the algebra of bounded operators B(H). If each embedding
Yoo : Hqa = Hy is an isomorphism for a < b € K, then the mapping 7 defined
by 7 ([p]) = 7(P) is a representation of the groupoid S/.~.

Proof. Take p,q € S such that 0,p = 9ypg. Then we have the equalities

(P * Q) = Xpsg = XpXg = 7(D)7(Q)-
Assume that all v, : H, — Hp are isomorphisms for all @ < b € K. Then, by
Lemma 2, we have the equality x3 = x7 for p ~ q. Hence, the mapping 7* in

the statement of the theorem is well-defined. Moreover, it is a representation
of the groupoid S/~. O

In the sequel, if a sequence P is a loop, then the mapping x3 is called a cycle.
We note that the equalities

XpXoXP = XB>  XpXoXs = Xp
hold for every p € G,. Therefore the set of cycles {Xﬁ}ﬁe@a is a regular semi-
group. It is clear that the element X7 is unique for each cycle xp. As a conse-
quence, the semigroup of cycles is inverse.

If the equivalence p ~ i, holds for some a € K, then the cycle x5 is said to
be trivial.
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Theorem 3. Every trivial cycle xp is a projection of the form
xp = @5 ® Lo,
where p € Gy and Qp 1s a projection on the domain Hyp.

Proof. By Lemma 2, since p ~ i, for an element a € K the cycle x3 is a
projection. O

Corollary 1. For every loop p the equality X%XT) = Qp®1, holds, where Qg s
a projection on the domain Hy-1,5 = Hp.

Proof. We note that the equality xzx5 = xp-1.5 and the equivalence Plsp ~

1, hold for an element a € K. O

Corollary 2. If p,q € G, and p ~ G, then the operator XpX7 = Pr, ® 1o 1s a
projection.

Proof. It is sufficient to note that the following equivalences hold:

1 ——1

D xq~D  xP~ig. O

Corollary 3. For all trivial cycles xp and xq one has the equality
XpXq = XgXp -
Theorem 4. If K is an upward directed set then every cycle xp is a projection

of the form x3 = Pu, ® I, where p € G, and Pp, is a projection on the
domain Hp.

Proof. In [13], it is shown that if K is an upward directed set then for each
loop p one has the equivalence p ~ i, for some ¢ € K. This means that
every cycle xp is trivial. Applying Theorem 3, we obtain the assertion of the
theorem. O

A cycle xp is said to be finite if the domain Hy is a finite-dimensional linear
space.

A cycle xp is said to be nilpotent if there exists a natural number m such
that the equality xz' = 0 holds.

§4. C*-generated by cycles

In what follows we suppose that the set K is not upward directed.

In general case, for p € G, every cycle xp has the form xp = Uy ® Tj;, where
Up : H, — H, is a partial isometry and Ty : [2(S,) — [*(S,) is a unitary
operator corresponding to the loop p such that Tpeq = efp.g), where g € ¢. By
Theorem 3, if a cycle xp is trivial then we may write the equality x5 = Qp® I,
where () is a projection.
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Assume that we are given two equivalent loops p ~ G. Then one has the
equality T = T5, but, in general, we have Uy # Ugz. Corollary 1 implies the
equalities x5x5 = Q5 ® I, and xzxg = Q7 ® I,. For loops p ~ g we define the
order relation on cycles: x5 < x7 if Q5 < Q7. It is easy to verify that one has
the relations

XpXT < XgXa:  XpXa < XpXp - (6)

Indeed, to prove the first relation we rewrite it in the form xz-1,5 < Xz-1.3
and note that Qz-1,; < Q7 = Qz-1,5. To prove the latter we make use of
Corollary 2. This statement guarantees that the operator x;xg is a projection.
Hence, we obtain xzx7 = X7X5 < Xj5X5, as desired.

For loops p ~ ¢ we define the addition operation x3V xg of cycles as follows:

1) if the operator Qp + Qg is also projection, i.e., QpQg = 0, then we set
Xp vV Xg = Xp T X

2) if the condition Q3Qg = @ # 0 holds then we put xzV x7 = x5+ x7((Q7 —
Q) ® Ia).

Lemma 3. Let p ~ q be loops with base point a. Then the addition of cycles

X7 V Xg can be represented in the form xp V xg = Upg ® Ty = Up g @ Tg, where
Upgq: Hy — H, is a partial isometry.

Proof. First, we assume that Q;Q7 = 0. Since T; = T we get the equalities
X7V Xg = Xp + xg = (Up + Ug) ® T, where Uy + Uy is a partial isometry.
Second, we assume that Qqu =@ #0.To prove the lemma it is enough to

show that (x5 V x7) (x5 V Xg) = Q ® I, where Q is a projection. Indeed, using
relations (6), we have the following:

(e Vxa)" (Vv xg) = (xp + ((Q7 — Q) @ La)xg) (xp + xa((Q7 — Q) © 1a))
<SQp® 1.+ ((Q7 — Q) ® 1.)(Qp @ L)
+(Qp @ 1)(Q7 - Q) ® L)
+((Q7 - Q) © 1)(Qg © [)((Rg — Q) @ L)
= Qe L+ (Q;—-Q @I =Q® L. O
Further, let F be an infinite subset in an equivalence class [p]. We denote

by K(FE) the family of all finite subsets of the set E. For every A € K(FE) we
define the operator
XA = \/ Xq-

geA
It follows from Lemma 3 that y 4 is a partial isometry satisfying the property

XZXA = QA 0% Iaa
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where @) 4 is a projection on the space
Hp = | Hp.
pEE
As well as it was done for cycles one can define the order relation for all
A,B € K(FE) as follows:

XA < xB, ifQa <Q@s,

which is equivalent to the inclusion A C B.

Let xg be the limit with respect to the net K (E) under the inclusion in the
strong operator topology. In particular, if E = [p] then we get the operator
X[p] = Xp- In the sequel we shall write

X» =\ xp
pep
where the sum is taken over the entire equivalence class. We shall call this
operator the p-cycle.
In the similar way as it was done for cycles, one can define a finite and a
nilpotent p-cycles. In what follows, we suppose that every p-cycle x;, is neither
finite nor nilpotent. Although particular cycles x3 may be finite or nilpotent.

Lemma 4. The following assertions hold:
(1) if p~q then X = X[q];
(2) for every p € G, the equalities XpXpXp = Xp and XpXpXp = X, hold;
(3) for every p,q € G, the relation xpXq < Xpxg holds.

Proof. (1) It follows immediately from the definition of the p-cycle.
(2) To prove the first equality we note that the representation

XpXp = Qp ® Iy
holds, where ), is the projection on the space
H, = H;.
pep
The proof of the second equation is similar.

(3) It is sufficient to show that the equality xpxq = Xxr holds for some
E C px*q. Indeed, we have the equalities

wxa= V wa= V s
PED,GEq pEP,gEq

Then we get E = {p*xq |DPE€p, g€ q} C{5|3 € p*xq} =p=q. This completes
the proof. O
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Further, we denote by 2, . the subalgebra in B(#) generated by trivial
cycles xp with p ~ 44, which is closed in the strong operator topology. This
algebra acts nontrivially only on the subspace H, ®1%(S,). We notice that this
algebra is commutative and contains, in particular, the operators x;xz, XpXE
for £ C [p], x;xp and etc.

Let us consider the family of subspaces

Aop =UaeXp, D E G

The subalgebra 2, . corresponds to the unit [i,] of the group G,. We claim
that 2, , is a Banach space. Indeed, let us take a Cauchy sequence {A,xp}o2,
in 2, . Hence, { AnXpXp oz is a Cauchy sequence in 24, . as well. Since 2, ¢ is
a Banach space the sequence {A,xpX,} converges to some element B € g .
Then, by Lemma 4(2), we have A,xp = AnXpXpXp and the sequence {A,xp}
converges to the element By, € 2, p, as claimed.

Let us denote by 2, the subalgebra in B(#) generated by elements from
the family 24, ,, p € G4, which is closed with respect to the uniform norm.

The main result of this paragraph is the proof of the assertion stating that
the C*-algebra 2, is a 71 (K )-graded algebra. For the definition of a G-graded
C*-algebra, where G is a group, we refer the reader to [14].

Lemma 5. For every E C [p] = p we have xg € Uqp. In particular, xp € Wqp
for each p € p.

Proof. Assume that Z C p. Then we have x;xE € g, as well as XpXEXp €
A, p- Further, one has the equality xpxr = Qr ® 14, where Qf is a projection
on the space

Hp = | Hy C H,.
peEE
Consequently, we have the equality Xy xEXp = XE- O
Lemma 6. For every p,q € G, the inclusion xpxq € A psq holds.
Proof. In the proof of Lemma 4 one has already seen that the equality
XpXq = XE

holds for some F C p * q. Hence, by Lemma 5, we have the desired inclusion

XpXq € Uaprq- O

We recall that a conditional expectation is a positive linear operator ® from a
C*-algebra 2 to its subalgebra 2y such that ||®|| = 1 and ®(BAC) = B®(A)C
for all B,C € 2y and A € .
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Lemma 7. The mapping ® : Ay — Aq e given by ®(B) = By, where

B = BO + ZBkka € @ Q’la,pa BO>Bk € Qlat,ey Pk 7& [ia]>

k pEG,
is a conditional expectation.
Proof. Firstly, let us show that for every B the inequality |®(B)| < ||B]|
holds. It follows from the definition of the norm that for every € > 0 there
exists an element h ® e, € H, @ [*(S,) with ||h ® e,|| = 1 such that we have
the estimate

1Bo(h @ ep)|| = || Boll —e-

Then we obtain the following:

1Bl > 1B @ &) = | Bo(h @ e) + Y Boxm(h @ e,)|
k

= [[ro® e+ 3" hn @ ey opll = IBo(h @ )| = 1Boll — <.
k-,

7

The validity of the above-mentioned inequalities follows from the inclusion
{pr;} € {px} which guarantees the condition py, * p # p. Since ¢ is arbitrary
we get the required estimate
12(B)|l = [IBoll < [IB]]-
Secondly, we take elements
Be @ Uap, A.C €Uy
p€Ga
Then we have the equalities
O(ABC) = ®(AByC + Y _ ABixy,C)
k
= O(Bj+ Y _ AByC'xp,) = Bj = AByC = A®(B)C. O
k
Theorem 5. The C*-algebra U, is w1 (K)-graded, that is, the following repre-

sentation holds:
o= P ey
pGGa%wl(K)

Proof. It is obvious that 2(,, N2, , = 0 for p # q.

Let us show that the equality A cXxp = Xp2a,e holds. Indeed, we take an
element P ® I, € 2A,.. Using assertion (2) in Lemma 4 together with the
commutativity of the algebra 2, ., we obtain the following equalities:

(P @ La)xp = (P ® L) XpXpXp = XpXp(P @ La)xp = Xxp(Q ® La),
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where
QeI =xy(P®I)xp € Age-
This yields the desired equality.
By Lemma 6, for every p,q € G, we obtain
Ao pUa,q © AgeXpla,eXg = Aa,eXpXg € Aaprq-
Further, for P ® I, € 2, we have the equalities

((P & Ia)Xp)* = X;(P 029 Ia) = Xp*l(P ® Ia) = (Q & Ia)prl'

This means that the property (2, ;)" = 2, 1 is fulfilled.
Finally, Lemma 7 implies that there is no an element in the space 2,
that can be approximated by linear combinations of elements from the family

{Rlag}geca\{p}- g

§5. Corona for a net of C*-algebras

The results of the preceding paragraph imply the existence of the family of
the graded C*-algebras {2, }qcx over the set K.

For elements a < b € K we define the mapping ap, : g — Ap as follows.
Taking an element xz € G, we set

b bx
aba(Xﬁ) = XaXpXa = X@*f)*(a,b)’

If we have the equivalence p ~ i, then we get the equivalence (b, a)xp*(a,b) ~ i
and the inclusion e (Ag.e) € Ape. Let p € G4. Then one has the equalities

b b
aba(xp) = Xa< \/ Xp) Xa* = \/ X@*ﬁ*(a,b)'
pEp pEp
Since the inclusion

{(b,a) xpx(a,b) | p € p} C [(b,a) ¥ P (a,0)] = Tba(p)

holds we conclude that

a(Xp) € Aoy, ()5

where o4, : G, — Gy is an isomorphism given by formula (5). Therefore we
have the inclusion

a(Aap) S Ap,oy, (p)-
Thus, the mapping ap, : A, — Ap preserves the graduation of the algebras.

Moreover, this mapping is an embedding. Really, using Lemma 1, for all A, B €
2, we obtain the equalities

apa(AB) = XS ABXY = X5 AU XEBXY = apa(A)pa(B).
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Lemma 1 implies that the property for the above mappings
Qeq = Qch O Opq

is fulfilled whenever a < b < ce€ K.
This means that the family of the algebras {2, },cx constitutes the net of
C*-algebras
(K7 Qlaa aba)angK

over the set K, where each mapping ap, : ™y — 2 is an embedding. This net
satisfies the isotony property (see |2]). The algebras of the net will be called the
local algebras. We note that if all the mappings Vi, : Hy, — Hp are isomorphisms
for a < b € K then the mappings ap, : A, — LA are isomorphisms of algebras.
We represent the partially ordered set K as the union of all its maximal
upward directed subsets:
K=|JK.

el
Such a representation is unique. Further we consider the net
(Ki7 ma; aba)angKi

over the upward directed set K;. Since the mapping ap, : Ay — 2Ap is an
embedding we may assume that the inclusion 2, C 2, holds for a < b. We

denote by
A= J A
aeK;

the inductive limit of the system of the C*-algebras {%,;}sck, over the di-
rected set K, that is, the completion with respect to the unique C*-norm on
UaGKi Aq. The algebra 2A; is called a quasi-local algebra.

We call the family of the limit algebras {2(;};cr the corona for the net of
C*algebras (K, g, Opa)a<bek -

Theorem 6. In the corona for every i € I the algebra U; is a 71 (K)-graded
C*-algebra, that is, the following representation holds:

A= P Aip
pem(K)

Proof. It follows from the fact that the embedding ap, : A, — 2 preserves
the graduation of the algebras. We have the representations

Q[ive = U Qlaye a’nd Q[ZJ) = U Q[CL,IN p 6 7-‘—I(I:(v)' |:|
aEKi aEKi
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Assume we are given two nets
K L
(K,Ha 77ba)a<beK and (L’Hx77yz)x<yeL

over partially ordered sets K and L, respectively, where H, (f( and H f are Hilbert
spaces and Yy, ¢ HEX — H[ as well as v, : HX — HyL are isometric embed-
dings for all a < b and = < y.

A pair

(0, @) : (K, Hc{(”Yba)agbeK - (L’HILWW):cgyeL

is called a morphism for nets of Hilbert spaces if the following properties are
fulfilled:

1) ¢ : K — L is a morphism of partially ordered sets, i.e., the condition
a < b implies ¢(a) < ¢(b);

2) the mapping
o: (PHS > PH!

acK zeL
as well as the mappings

O, = D|yx : Hy — HY,
for all @ € K are isometric embeddings;
3) the equality
Dy 0 Yo = Y (b)p(a) © o,
holds whenever a < b.
Similarly, a pair

(p, @)+ (K, AL, aa) — (L, AL, ayy)

a<beK T<y€eL

is @ morphism for nets of C*-algebras if

o = {(I)a}aEK7

where @, : Qlff — Qli(a) is a x-homomorphism of C*-algebras for every a € K,
and the equality

Ly 0 v = App)p(a) © Pa
holds whenever a < b. A morphism is said to be faithful if ®, is an embedding
for every a € K.

Let {2X};cr and {QLJL}J-GJ be the coronas for the nets of C*-algebras (K, X, apy)a<ter
and (L, 2L, Qe )z<yel, Tespectively. A morphism of coronas is a family of map-
pings ®* = {®};c; such that for every index i € I there exists an index j € J
for which @7 : Qlf( — QlJL is a *-homomorphism of C*-algebras.

A morphism ¢ : K — L induces the morphism [ ?L, which is denoted
by the same letter, as follows: if P is a sequence of elementary paths of the
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forms (a,b) and (b,a) on K then we set that ¢(p) is a similar sequence of

elementary paths of the forms (p(a), (b)) and (¢(b), ¢(a)) on L.
We notice that if p; ~ Py then ¢(p;) ~ ¢(Py). Therefore, the morphism ¢
induces the homomorphisms of the groupoids

o ?K/N — gL/N
and groups

* . K L
(V2R Ga _>G<p(a)

defined by ¢*([p]) = [¢(p)]. Consequently, one gets the homomorphism of the
first homotopy groups

o* i m(K) = m(L).

Theorem 7. Let ¢* : m(K) — m1(L) be an injective morphism of the first
homotopy groups and ®, : HE — H£ o) be an isometric isomorphism for every
a € K. Then the morphism for the nets of Hilbert spaces

. K L
(907(p) . (K7 Ha ’fyba)a<b€K — (L7 Hx?VyI)xgyeL
induces the faithful morphism for nets of C*-algebras

(0. D)+ (B AT aba) e e = (Do AT aga) ey

Proof. Let us consider the direct sums of Hilbert spaces
W =P HE @ 1P(S5)
acK
and
H' =P H! 2 1P(Sh).
zeL
We define the mapping ® ® @ : HX — HE by setting
(q) &® @)(h & €p) = (I)(h) & 6@*(}7)
for every h ® e, € HX . Tt is clear that the mapping
d® 9/5 = @ o, ® 8/5
aeK

is an isometric embedding and one has the inclusion
K o 120 oK L 2/ qL
((I)a ® 90)(Ha ®1 (Sa )) < H@p(a) ®l (Sap(a))'

We claim that for every p € S the equality
polp=TopoP
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holds, where Tpe; = efp.q. Indeed, we have the equalities

PTpeq = Pefpq) = €lomre@] = Lo@ e (@) = T Peqs
as claimed.
Let us show the validity of the equality

(@, @) o xl = X70) 0 (B0 @ ). (7)

To this end, we write the operator XZ in the form x’; = Yoo @ Tw. Then we
have the chain of the following equalities:

(‘I’b & @)XZ = ((I)b ® (/’5) (’Yba ® T@)
= ®oma @ PTG o5 = Ye)o(a)Pa @ Tz @) ?

_ N e(b) R
= (Yool @ Tamramy) (Ba ® ) = X0 (2a © §).

Since all mappings @, are isometric isomorphisms we obtain the equality
y,5(Hp) = Hyp) for p € S. Hence, it follows from (7) that

(@0 ® B) o X = X500 0 (@@ B).

Therefore, for each p one has the equality
((1)8@ ® p)o Xp = Xe(p) © ((1)3@ ® ).
We put @5 (xp) = X, (p) for every p € G, If the equivalence p ~ i, holds then
we have the equivalence ¢(p) ~ i, (q) as well. This means that if the cycle x5 is
trivial in the algebra X then the cycle X(p) 1s also trivial in the algebra Qlé(a).

Since ®, is an isomorphism and each trivial cycle has the form x; = Qp ® I,
the mapping X3 — X, (p) defined on the set of generators can be extended to

the embedding @} : QIK — 2[5((1) Further, we extend the embedding ®} to

the whole algebra X as follows: if

o=\ Xz

pEp

») =V 206 =\ Xew

pep pEp

then we set

Since the condition

{¢(®) | p € p} C [0(D)] = ¢"(p)
holds we get

;) € Ag(a) 0 )



18 S. A. GRIGORYAN, E. V. LIPACHEVA, A. S. SITDIKOV

Thus, one has the inclusion @;(Qléfp) - Qlé(a) ()" Moreover, because ¢* is an
embedding we obtain the embedding

K L
@ Ql — QL @ ngo(a) g
pemi(K) gemi (L)

that preserves the graduation.
It remains to check the equality

O © Aba = Ay(p)p(a) © P

for every a < b € K. To do this, we check its validity for the generators. Indeed,
for p € G, we have

* * % b)x* *
By (xp) = 05 (XXXE) = XXX o) = Cp(byo(a) @i (Xp):

This completes the proof of the theorem. O
Corollary 4. Let {AK};c; and {QlJL}jEJ be the coronas for nets

(K, Q[f, aba) and (L, ng, ayx)

a<beK r<yeL’

respectively. Then a morphism for nets of C*-algebras
(QD, (I)*) : (K7 Qlfv ab“)angK - (L7 Qlf;» ayz)xéyeL

is extended to a morphism of coronas ®* = {®!}icr so that for every i € I
there exists an index j € J such that

* K L
o7 () € Ay

Proof. Let us consider the inductive limit

= ux

acK;
We put
- agi (I)Z (Qlé() - agi Qlé(a)
Since the inclusion ¢(K;) C L; holds for some index j € J we have &} () C
Q[]L , as required. O

The following example demonstrates that if ¢©* is not an embedding then a
morphism for nets of C*-algebras is not faithful, in general.

Example. Let Y be the open unit disk in the complex plane with the center
at the coordinate origin and X = Y'\{(0,0)}. Let K and L be the families of all
open simply connected subsets of the sets X and Y, respectively. The families
K and L are partially ordered sets under the inclusion relation. Moreover,
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the set L is upward directed. It is easy to see that the equalities 71 (K) = Z
and 71 (L) = {0} hold. The inclusion X C Y yields the embedding ¢ : K —
L. Therefore, we have the homomorphism of the first homotopy groups ¢* :
m1(K) — 71(L) such that ¢*(n) = 0 for each n € Z.

Further, let H be a Hilbert space. We consider the bundles of Hilbert
spaces (K, Hq,Ypa)a<bex and (L, Hy,Vya)z<yer, over K and L, respectively
(see [6]), where H, = H, = H and 7pq, 7Yy, are the identity mappings.
Then one associates to them the bundles of C*-algebras (K, Qlff , Qb ) a<be KK
and (L, AL, Qye)z<yer, over K and L, respectively, where oy, as well as oy, are
isomorphisms. The C*-algebra 21X is Z-graded. It is generated by the operators
Xn =1®T§, n € m(K). Here I ® Tj is the unitary two-sided shift operator
on the space H ® [?(SK), which corresponds to n = 1 € 711 (K). Therefore, we
have the isomorphism X = C(S'), where C(S?) is the Banach algebra of all
continuous complex-valued functions on the unit circle in the complex plane.
The C*-algebra 2L is generated by the operator Xg*(n) = 1 ® Io. Hence, one
has the isomorphism 2% = C. The mapping ® : A% — Qlé(a) defined by the
correspondence Xp F X (n) Yields the following commutative diagram:

K ! L
Ae — A

~| ) |2

cisty = C
where m : C(S') — C is the multiplicative functional given by

m(f) = f(1).

Obviously, the mapping m is not an embedding.
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