УДК 534.2

ВЛИЯНИЕ ПРИМЕСЕЙ ХРОМА И ТЕЛЛУРА НА ТЕРМОЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГАЛЕНИТА

© 2017 г. В. А. Голенищев-Кутузов, А. М. Синицин, В. А. Уланов*

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет", Казань * Е. mail. whiled@inhow.my

*E-mail: ulvlad@inbox.ru

В диапазоне 300–800 К исследованы концентрационные зависимости коэффициента Зеебека, удельного сопротивления и теплопроводности термоэлектрических кристаллов PbS с примесями хрома ($0 < x \le 0.01$) и теллура ($0 < y \le 0.03$). Установлено, что хром в кристалле PbCr_xS_{1-x} увеличивает число свободных электронов, но уменьшает величину коэффициента Зеебека. Однако с ростом концентрации теллура в сплавах PbCr_xS_{1-x-y}Te_y происходит увеличение коэффициента Зеебека с одновременным понижением теплопроводности. В результате термоэлектрическая добротность кристалла PbCr_xS_{1-x-y}Te_y повышается. Причины наблюдаемых эффектов обсуждаются.

DOI: 10.7868/S0367676517030127

Галенит (PbS) относится к группе халькогенидов свинца, PbS, PbTe и PbSe, являющихся узкощелевыми прямозонными полупроводниками. Твердые растворы этих соединений считаются перспективными материалами для термоэлектрических преобразователей, используемых для преобразования тепловой энергии в электрическую и наоборот.

Эффективность термоэлектрических преобразователей энергии прежде всего определяется термоэлектрической добротностью используемых материалов:

$$ZT = \frac{S^2}{\rho\kappa}T,\tag{1}$$

где S – коэффициент Зеебека, ρ – удельное сопротивление материала. к – удельная теплопроводность, *T* – абсолютная температура. У широко используемых в настоящее время материалов (где базовыми соединениями являются Bi₂Te₃, PbTe и сплавы кремния с германием) безразмерная величина ZT достигает значений 0.7–1.2. Поскольку этих значений недостаточно для высокоэффективного преобразования, ищутся новые материалы или пути повышения ZT уже известных материалов. Повышение ZT любого термоэлектрического материала в принципе возможно путем выбора подходящих легирующих присадок [1-3] или создания наноструктурных дефектов в его кристаллической решетке [4]. Как оказалось, при этом происходит изменение кинетических параметров термоэлектрика.

Из ряда халькогенидов свинца, кроме PbTe, в последнее время стал привлекать внимание ис-

следователей PbSe. легированный различными примесями [2]. Галенит в качестве термоэлектрического материала до настоящего времени не рассматривался, поскольку в монокристаллическом состоянии он обладает невысокой прочностью и сравнительно невысокими значениями коэффициента Зеебека. Но преимущество этого материала – более высокая природная распространенность, низкая стоимость и сравнительно невысокая токсичность компонентов. Учитывая то, что поликристаллические образцы PbS, приготовленные методом экструзии, приобретают прочность, сравнимую с РbTe, их можно рассматривать в качестве базового термоэлектрического материала. Проблемой остается выбор легирующих присадок.

Данную работу стимулировали выводы авторов [3] о возможности увеличения термоэлектрической добротности узкозонных полупроводников путем локального изменения плотности зонных состояний в результате внедрения в их решетку неизовалентных примесей, поэтому целью данной работы явилось изучение изменений в термоэлектрических свойствах PbS, которые могут возникнуть в результате его легирования хромом. Примесь теллура вводили для создания в решетке PbS локальных деформационных полей, приводящих к уменьшению теплопроводности и изменяющих, как и примесь хрома, зонную структуру базового материала.

Кристаллы $Pb_{1-x}Cr_xS$ и $Pb_{1-x}Cr_xS_{1-y}Te_y$ были выращены методом Бриджмена в кварцевых запаянных ампулах. Наличие атомов теллура в позициях серы обеспечивалось добавлением в ших-

Рис. 1. Зависимости удельного сопротивления образцов $Pb_{1-x}Cr_xS(\rho)$ от концентрации примеси хрома *x*, полученные при температурах $T_1 = 300$ и $T_2 = 700$ K.

ту необходимого количества PbTe. Измерения термоэлектрических характеристик выращенных материалов производили в приборе оригинальной конструкции, позволяющей производить измерение *S*, ρ и к в диапазоне температур 300–800 К без демонтажа тепловых и электрических контактов. Точность измерений: *S* – ±5%, ρ – ±2%, κ – ±3%.

Основные результаты выполненных измерений представлены на рисунках 1–4.

На рис. 1 показаны графики зависимостей удельных сопротивлений (ρ) образцов Pb_{1-x}Cr_xS от концентрации содержащихся в них примесных атомов хрома (x). Зависимости зарегистрированы в двух температурных точках ($T_1 = 300$ и $T_2 = 700$ K), принадлежащих рабочему диапазону галенита как термоэлектрического материала $(250 \le T_{\text{раб}} \le 850 \text{ K})$. Максимум термоэлектрической добротности этого материала обычно располагается вблизи точки $T \approx 750$ К. Как следует из графиков $\rho(x)$, удельное сопротивление кристаллов $Pb_{1-x}Cr_xS$ падает с повышением концентрации хрома, но увеличивается с повышением температуры. Первое указывает на то, что атомы хрома являются неизовалентными примесями, влияющими на концентрацию свободных носителей заряда в образцах $Pb_{1-x}Cr_xS$, второе — на существенное уменьшение подвижности этих носителей вследствие их рассеяния на фононах.

Изучение эффекта Холла в образцах Pb_{1-x}Cr_xS позволило определить тип их проводимости –

Рис. 2. Зависимость холловской концентрации свободных электронов $(n_{\rm H})$ в образцах ${\rm Pb}_{1-x}{\rm Cr}_x{\rm S}$ от концентрации примеси хрома x (T = 300 K).

проводимость оказалась электронной. Кроме того, по результатам изучения, выполненного при T = 300 K, была получена зависимость холловской концентрации электронов ($n_{\rm H}$) от концентрации примесного хрома (x). Эта зависимость представлена на рис. 2.

Как оказалось, $n_{\rm H}$ почти на два порядка возрастает с увеличением *x*, свидетельствуя о том, то хром в кристалле ${\rm Pb}_{1-x}{\rm Cr}_x{\rm S}$ является донорной примесью. Насыщение роста $n_{\rm H}(x)$ при $x \ge 0.008$ связано, очевидно, с тем, что при этих концентрациях большинство атомов хрома образуют включения посторонней фазы, в составе которых они уже не могут быть донорами свободных электронов.

Необходимо отметить, что появление таких включений посторонней фазы в образцах $Pb_{1-x}Cr_xS$ подтверждается также наличием горизонтальной "полки" на графиках зависимостей $\kappa_{tot}(x)$, представленных на рис. 3. Здесь видно, что при неизменной температуре теплопроводность этих образцов быстро растет в диапазоне концентраций $0 \le x \le 0.007$, но затем рост прекращается. Учитывая то, что теплопроводность кристаллической решетки полупроводников в основном складывается из решеточной и электронной частей ($\kappa = \kappa_{tot} = \kappa_{tot} + \kappa_{el}$), наблюдаемый при T = 300 K резкий рост $\kappa_{tot}(x)$ говорит о возрастании роли электронного вклада, поскольку рассеяние на точечных дефектах, образованных примесными атомами,

Рис. 3. Зависимости теплопроводности образцов $Pb_{1-x}Cr_xS(\kappa_{tot})$ от концентрации примеси хрома *x*, полученные при температурах $T_1 = 300$ и $T_2 = 700$ К.

обычно ведет к уменьшению теплопроводности. Таким образом, уменьшение роста к и появление "полки" на графиках зависимостей $\kappa_{tot}(x)$ при $x \ge 0.008$ также может быть объяснено кластеризацией примесных атомов хрома. В этой связи было бы интересном изучить изменения термоэлектрических характеристик образцов Pb1- "Cr"S при уровнях легирования хромом выше точки *x* = = 0.01. Однако в этом диапазоне концентраций хрома рост качественных кристаллов оказался невозможным, хотя можно предположить, что в таких кристаллах наблюдавшаяся "полка" на зависимости $\kappa_{tot}(x)$ должна перейти в область спада. Действительно, введение в кристалл большого количества примесных атомов, у которых масса и заряд отличаются от соответствующих характеристик атомов основной решетки, обычно существенно уменьшает коэффициент теплопроводности синтезируемого материала. При этом различия в зарядах базового и его заместившего атомов приводят не только к уменьшению коэффициента теплопроводности, но и к увеличению удельного сопротивления из-за дополнительного рассеяния свободных электронов на таких примесях. Если же примесный и базовый атомы имеют различные массы, но одинаковые заряды, существенное уменьшение теплопроводности материала не сопровождается заметными изменениями электропроводности. Последнее обусловлено тем, что длины волн основной части фононов имеют тот же

Рис. 4. Зависимости величины коэффициента Зеебека (*S*) для образцов $Pb_{1-x}Cr_xS$ от концентрации примеси хрома *x*, полученные при температурах $T_1 = 300$ и $T_2 = 700$ K.

порядок, что и постоянная решетки, в то время как длины электронных волн значительно больше.

На рис. 4 представлены зависимости величины коэффициента Зеебека (S) для образцов $Pb_{1-x}Cr_xS$ от концентрации примеси хрома x, зарегистрированные при температурах $T_1 = 300$ и $T_2 = 700$ К. Из этих зависимостей следует, что увеличение S происходит как с увеличением x при постоянной температуре, так и с увеличением температуры при постоянной величине x. Для качественного объяснения этих фактов рассмотрим равенство Мотта для коэффициента Зеебека [3]:

$$S = \frac{\pi^2}{3} \frac{(k_B)^2 T}{q} \left\{ \frac{1}{n} \frac{dn(E)}{dE} + \frac{1}{\mu} \frac{d\mu(E)}{dE} \right\}_{E=E_E},$$
 (2)

где q – заряд свободного носителя, T – температура, n(E) = g(E)f(E) – населенность уровня E свободными носителями, $\mu(E)$ – подвижность, f(E) – функция Ферми, g(E) – функция, описывающая плотность состояний в зоне проводимости. Из (2) видно, что высокие значения S реализуются в полупроводниках при невысоких концентрациях свободных носителей. Однако удельная проводимость полупроводника, $\sigma(E) = qn(E)\mu(E)$, при этом должна падать (а удельное сопротивление, $\rho = 1/\sigma$, – возратать), поскольку она зависит от населенностей уровней энергии свободными носителями, n(E) = g(E)f(E), и пропорциональна подвижностям носителей, $\mu(E)$. Очевидно, пред-

ставленные на рис. 4 экспериментальные факты свидетельствуют о существенной перестройке спектра состояний свободных носителей в зоне проводимости и относительном смещении уровня Ферми, что реализуется вследствие возрастания концентрации примесных дефектов и увеличения температуры.

Расчет температурной зависимости безразмерной термоэлектрической добротности образцов $Pb_{1-x}Cr_xS$ при различных уровнях их легирования хромом в диапазоне $0 \le x \le 0.007$ показал, что максимальная величина $ZT_{max} \approx 0.72$ реализовалась в образцах $Pb_{0.993}Cr_{0.007}S$ при температуре $T \approx 790$ K.

Измерения параметров ρ , к и *S* кристаллов Pb_{1-x}Cr_xS_{1-y}Te_y, выполненные при температуре 750 K, показали, что кодопирование образцов Pb_{1-x}Cr_xS атомами теллура приводит к дополнительным изменениям их термоэлектрических параметров: возрастание концентрации атомов теллура *y* при постоянных значениях *x* и температуре

T = 750 К вызывает увеличение параметра *S* примерно на 4–7%. При этом р практически не увеличивается (в пределах точности измерений), но величина коэффициента теплопроводности к существенно уменьшается (примерно на 14–18%). Все это приводит к росту величины *ZT*. Последняя достигала своего максимального значения $ZT_{max} \approx 1.0$ в образцах Pb_{0.994}Cr_{0.006}S_{0.973}Te_{0.027} при $T \approx 760$ K.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алиев Ф.Ф., Гасанов Г.А. // ФТП. 2012. Т. 46. С. 313.
- 2. Androulakis J., Lee Y., Todorov I., Chung D-Y., Kanatzidis M. // Phys. Rev. B. 2011. V. 83. P. 195209.
- Heremans J.P., Jovovic V., Toberer E.S., Saramat A., Kurosaki K., Charoenphakdee A., Yamanaka S., Snyder G.J. // Science. 2008. V. 321. P. 554.
- Biswas K., He J., Blum I.D., Wu Chun-I, Hogan T.P., Seidman D.N., Dravid V.P., Kanatzidis M.G. // Nature. 2012. V. 489. P. 414.