Characterization of Tracial Functionals on Von Neumann Algebras

Hasan Alhasan^{1*} and Khattab Fawwaz^{1**}

(Submitted by G. G. Amosov)

¹N. I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Tatarstan, 420008 Russia

Received April 8, 2021; revised April 22, 2021; accepted May 2, 2021

Abstract—It is proved that the inequality

 $\varphi(A) \leq \varphi(|A + iB|)$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$

characterizes tracial functionals among all positive normal functionals φ on a von Neumann algebra \mathcal{A} . This strengthens the L. T. Gardner's characterization (1979). As a consequence, a criterion for commutativity of von Neumann algebras is obtained. Also we give a characterization of traces in a wide class of weights on a von Neumann algebra via this inequality. Every faithful normal semifinite trace φ on a von Neumann algebra \mathcal{A} satisfies this relation. Let $||| \cdot |||$ be a unitarily invariant norm on a unital C^* -algebra \mathcal{A} . Then $|||\mathcal{A}||| \leq |||\mathcal{A} + i\mathcal{B}|||$ for all $\mathcal{A} \in \mathcal{A}^+$ and $\mathcal{B} \in \mathcal{A}^{sa}$.

DOI: 10.1134/S1995080221100024

Keywords and phrases: Hilbert space, linear operator, von Neumann algebra, C^* -algebra, weight, trace, tracial inequality.

1. INTRODUCTION

Dimension functions and traces on C^* -algebras are fundamental tools in the operator theory and its applications. Hence the problem of characterization of traces in a wide classes of weights on C^* -algebras is important and attracts the attention of a large group of mathematicians, see [1–11].

If φ is a tracial positive normal linear functional on a von Neumann algebra \mathcal{A} , and p, q are positive numbers such that 1/p + 1/q = 1, then the following hold:

• Hölder's inequality [12, Chapter IX, Theorem 2.13], [11, Theorem 5]:

$$\varphi(|XY|) \le \varphi(X^p)^{1/p} \varphi(Y^q)^{1/q}$$
 for all $X, Y \in \mathcal{A}^+$;

• Cauchy–Schwarz–Buniakowski inequality [13, Theorem 4.21]:

$$\varphi(|XY|^{1/2}) \leq \varphi(X)^{1/2} \varphi(Y)^{1/2} \quad \text{for all} \quad X, Y \in \mathcal{A}^+;$$

• Golden–Thompson inequality [14, Theorem 4]:

$$\varphi(e^{X+Y}) \leq \varphi(e^{X/2}e^Ye^{X/2}) \quad \text{for all} \quad X,Y \in \mathcal{A}^{\mathrm{sa}};$$

• Peierls–Bogoliubov inequality [14, Theorem 7]:

$$\varphi(e^X) \exp \frac{\varphi(e^{X/2}Ye^{X/2})}{\varphi(e^X)} \le \varphi(e^{X+Y}) \quad \text{for all} \quad X, Y \in \mathcal{A}^+.$$

^{*}E-mail: hassanmalhassan@gmail.com

^{**}E-mail: khattab1058@hotmail.com

H. Araki in [15] has proved the following inequality:

$$\operatorname{tr}((X^{1/2}YX^{1/2})^{rp}) \le \operatorname{tr}((X^{r/2}Y^rX^{r/2})^p), \quad r \ge 1, \quad p > 0.$$

Here X, Y are positive operators on a Hilbert space \mathcal{H} . This inequality generalizes the Lieb and Thirring inequalities, and is close in spirit to the Golden–Thompson inequality (see [16, § 8]).

In general any natural trace inequality is sharp in the sense that the trace is the only (positive linear) functional that satisfies the inequality. It is well-known that either of inequalities: Hölder, Cauchy–Schwarz–Buniakowski, Golden–Tompson, Peierls–Bogoliubov, Araki–Lieb–Thirring etc., limited only to projections characterizes the tracial functionals among all positive normal functionals φ on a von Neumann algebra \mathcal{A} , see [17–23].

In this paper, we characterize the trace via the well-known inequality

$$\varphi(A) \le \varphi(|A + iB|)$$
 for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$, (1)

where $i \in \mathbb{C}$ with $i^2 = -1$ (Theorem 1). It is shown that this strengthens the Gardner's characterization [8] (Corollary 2). As a consequence, a criterion for commutativity of von Neumann algebras is obtained (Corollary 3). Also we give a characterization of traces in a wide class of weights on a von Neumann algebra via inequality (1) (Corollary 4). Every faithful normal semifinite trace φ on a von Neumann algebra \mathcal{A} satisfies relation (1) (Theorem 2). Let $||| \cdot |||$ be a unitarily invariant norm on a unital C^* -algebra \mathcal{A} . Then $|||\mathcal{A}||| \leq |||\mathcal{A} + i\mathcal{B}|||$ for all $\mathcal{A} \in \mathcal{A}^+$ and $\mathcal{B} \in \mathcal{A}^{sa}$ (Theorem 3). Recall one interesting fact in the finite-dimensional case:

If the matrix $A \in \mathbb{M}_n(\mathbb{C})$ in the Cartesian decomposition T = A + iB is positive then for determinants we have $|\det T| \ge \det A$, see [24, Corollary VI.7.5].

2. DEFINITIONS AND NOTATION

A C^* -algebra is a complex Banach *-algebra \mathcal{A} such that $||A^*A|| = ||A||^2$ for all $A \in \mathcal{A}$. For a C^* algebra \mathcal{A} by \mathcal{A}^{pr} , \mathcal{A}^{sa} and \mathcal{A}^+ we denote its subsets of projections ($A = A^* = A^2$), Hermitian elements ($A^* = A$) and positive elements, respectively. If $A \in \mathcal{A}$, then $|A| = \sqrt{A^*A} \in \mathcal{A}^+$. If I is the unit of the algebra \mathcal{A} and $P \in \mathcal{A}^{\text{pr}}$ then $P^{\perp} = I - P$.

A mapping $\varphi : \mathcal{A}^+ \to [0, +\infty]$ is called *a weight* on a C^* -algebra \mathcal{A} , if $\varphi(X + Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^+$, $\lambda \ge 0$ (moreover, $0 \cdot (+\infty) \equiv 0$). For a weight φ define

$$\mathfrak{M}_{\varphi}^{+} = \{ X \in \mathcal{A}^{+} \colon \varphi(X) < +\infty \}, \quad \mathfrak{M}_{\varphi} = \operatorname{lin}_{\mathbb{C}} \mathfrak{M}_{\varphi}^{+}.$$

The restriction $\varphi|_{\mathfrak{M}_{\varphi}^+}$ can always be extended by linearity to a functional on \mathfrak{M}_{φ} , which we denote by the same letter φ . Such an extension allows us to identify finite weights (i.e., $\varphi(X) < +\infty$ for all $X \in \mathcal{A}^+$) with positive functionals on \mathcal{A} . A positive linear functional φ on \mathcal{A} with $||\varphi|| = 1$ is called *a state*. A weight φ is called *faithful*, if $\varphi(X) = 0$ ($X \in \mathcal{A}^+$) $\Rightarrow X = 0$; *a trace*, if $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{A}$. A trace φ on a C^* -algebra \mathcal{A} is called *semifinite*, if $\varphi(A) = \sup{\{\varphi(B) : B \in \mathcal{A}^+, B \leq A, \varphi(B) < +\infty\}}$ for every $A \in \mathcal{A}^+$.

Let \mathcal{H} be a Hilbert space over the field \mathbb{C} , $\mathcal{B}(\mathcal{H})$ be the *-algebra of all linear bounded operators on \mathcal{H} . By Gelfand–Naimark theorem every C^* -algebra is isometrically isomorphic to a concrete C^* -algebra of operators on a Hilbert space \mathcal{H} [25, II.6.4.10]. By the commutant of a set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ we mean the set

$$\mathcal{X}' = \{ Y \in \mathcal{B}(\mathcal{H}) \colon XY = YX \text{ for all } X \in \mathcal{X} \}.$$

A *-subalgebra \mathcal{A} of the algebra $\mathcal{B}(\mathcal{H})$ is said to be a von Neumann algebra acting on a Hilbert space \mathcal{H} , if $\mathcal{A} = \mathcal{A}''$. For $P, Q \in \mathcal{A}^{\text{pr}}$ we write $P \sim Q$ (the Murray–von Neumann equivalence), if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathcal{A}$.

A weight φ on von Neumann algebra \mathcal{A} is called *normal*, if $X_i \nearrow X$ $(X_i, X \in \mathcal{A}^+) \Longrightarrow \varphi(X) = \sup \varphi(X_i)$; *semifinite*, if the set \mathfrak{M}_{φ} is ultraweakly dense in \mathcal{A} (see [26, Definition VII.1.1]).

Using Upmeier's results [27], it is actually proved in [28, Theorem 1.4.2]Ayu86 that a weight on a von Neumann algebra \mathcal{A} is a trace if and only if $\varphi(SAS) = \varphi(A)$ for any $A \in \mathcal{A}^+$ and a symmetry $S \in \mathcal{A}^{sa}$.

3. TRACE CHARACTERIZATION ON VON NEUMANN ALGEBRAS

Let us recall Taylor's formula with Peano's remainder. Lemma 1. If $b \in \mathbb{R}$ then

$$(1+x)^{b} = 1 + bx + \frac{1}{2!}b(b-1)x^{2} + \ldots + \frac{1}{n!}b(b-1)\cdots(b-n+1)x^{n} + o(x^{n}) \quad as \quad x \to 0$$

Theorem 1. For a positive normal linear functional φ on a von Neumann algebra \mathcal{A} the following conditions are equivalent:

(i) φ is tracial;

(ii) $\varphi(A) \leq \varphi(|A + iB|)$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$, where $i \in \mathbb{C}$ with $i^2 = -1$.

Proof. (i) \Rightarrow (ii). The finite traces on a C^* -algebra \mathcal{A} are precisely those (positive) linear functionals φ on \mathcal{A} which satisfy $|\varphi(X)| \leq \varphi(|X|)$ for all $X \in \mathcal{A}$, see [8]. Since $\varphi(A) \in \mathbb{R}^+$ and $\varphi(B) \in \mathbb{R}$, we have $\varphi(A) \leq |\varphi(A + iB)|$.

Let us show that for an arbitrary von Neumann algebra, the proof of the inverse implication (i.e., (ii) \Rightarrow (i)) can be reduced to the case of the algebra $\mathbb{M}_2(\mathbb{C})$ just as this was done in a number of other similar cases (see [8] or [29]).

It is well known [8] that a positive normal linear functional φ on a von Neumann algebra \mathcal{A} is tracial if and only if $\varphi(P) = \varphi(Q)$ for all $P, Q \in \mathcal{A}^{pr}$ with PQ = 0 and $P \sim Q$ (also see [29, Lemma 2]). Assume that a *-algebra \mathcal{N} in the reduced algebra $(P+Q)\mathcal{A}(P+Q)$ is generated by a partial isometry $V \in \mathcal{A}$ realizing the equivalence of P and Q. Then \mathcal{N} is *-isomorphic to $\mathbb{M}_2(\mathbb{C})$, while inequality (ii) remains valid for operators from \mathcal{N} and the restriction of the functional $\varphi|\mathcal{N}$. We shall show that such a restriction is a tracial functional on \mathcal{N} ; therefore, $\varphi(P) = \varphi(Q)$.

As it is well known, every linear functional φ on $\mathbb{M}_2(\mathbb{C})$ can be represented in the form $\varphi(\cdot) = \operatorname{tr}(S_{\varphi} \cdot)$. The two-by-two matrix S_{φ} is called the density matrix of φ . It is easily seen that without loss of generality we can assume that

$$S_{\varphi} = \operatorname{diag}\left(\frac{1}{2} - s, \frac{1}{2} + s\right), \quad 0 \le s \le \frac{1}{2}.$$

Thus $\varphi(X)$ equals $(1/2 - s)x_{11} + (1/2 + s)x_{22}$ for $X = [x_{ij}]_{i,j=1}^2$ in $\mathbb{M}_2(\mathbb{C})$.

Let $\delta \in \mathbb{C}$ with $|\delta| = 1$ and $0 \le t \le 1$. By $R^{(t,\delta)}$ we denote the projection

$$R^{(t,\delta)} = \begin{pmatrix} t & \delta\sqrt{t-t^2} \\ \overline{\delta}\sqrt{t-t^2} & 1-t \end{pmatrix} \in \mathbb{M}_2(\mathbb{C}).$$

Let us put $A = R^{(1/2 + \varepsilon, 1)}$ and

$$B = \begin{pmatrix} 0 & \mathrm{i}\varepsilon \\ -\mathrm{i}\varepsilon & 0 \end{pmatrix}$$

for $0 < \varepsilon < 1/2$. Then $\varphi(A) = \operatorname{tr}(S_{\varphi}A) = (1/2 - s)(1/2 + \varepsilon) + (1/2 + s)(1/2 - \varepsilon) = 1/2 - 2s\varepsilon$. Put $f(\varepsilon) = \sqrt{1/4 - \varepsilon^2}$, then the matrix

$$|A + iB|^{2} = \begin{pmatrix} \frac{1}{2} + \varepsilon + \varepsilon^{2} + 2\varepsilon f(\varepsilon) & f(\varepsilon) - 2\varepsilon^{2} \\ f(\varepsilon) - 2\varepsilon^{2} & \frac{1}{2} - \varepsilon + \varepsilon^{2} - 2\varepsilon f(\varepsilon) \end{pmatrix}$$

has the characteristic equation $\lambda^2 - (1 + 2\varepsilon^2)\lambda + \varepsilon^4 = 0$. Therefore,

$$\lambda_1 = \frac{1 + 2\varepsilon^2 + \sqrt{1 + 4\varepsilon^2}}{2} \quad \text{and} \quad \lambda_2 = \frac{1 + 2\varepsilon^2 - \sqrt{1 + 4\varepsilon^2}}{2}.$$

By the Taylor's formula with the reminder in the Peano form (see Lemma 1 with b = 1/2) we obtain

$$f(\varepsilon) = \frac{1}{2}\sqrt{1 - 4\varepsilon^2} = \frac{1}{2} - \varepsilon^2 - \varepsilon^4 + o(\varepsilon^5), \quad \sqrt{1 + 4\varepsilon^2} = 1 + 2\varepsilon^2 - 2\varepsilon^4 + o(\varepsilon^5) \quad \text{as} \quad \varepsilon \to 0 + .$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

Hence

$$\lambda_1 = 1 + 2\varepsilon^2 - \varepsilon^4 + o(\varepsilon^5), \quad \lambda_2 = \varepsilon^4 + o(\varepsilon^5) \quad \text{as} \quad \varepsilon \to 0 + .$$

Let us represent by the finite-dimensional Spectral Theorem

$$|A + iB|^2 = \lambda_1 R^{(t,1)} + \lambda_2 R^{(t,1)\perp} = \lambda_1 R^{(t,1)} + \lambda_2 R^{(1-t,-1)}$$

and find the unknown parameter $t \in [0, 1]$ from the equation

$$\frac{1}{2} + \varepsilon + \varepsilon^2 + 2\varepsilon f(\varepsilon) = \lambda_1 t + \lambda_2 (1 - t), \quad \text{i.e.,}$$

$$\frac{1}{2} + 2\varepsilon + \varepsilon^2 - 2\varepsilon^3 - 2\varepsilon^5 + o(\varepsilon^5) = (1 + 2\varepsilon^2 - \varepsilon^4 + o(\varepsilon^5))t + (\varepsilon^4 + o(\varepsilon^5))(1 - t) \quad \text{as} \quad \varepsilon \to 0 + .$$

Thus

$$t = \frac{\frac{1}{2} + 2\varepsilon + \varepsilon^2 - 2\varepsilon^3 - \varepsilon^4 - 2\varepsilon^5 + o(\varepsilon^5)}{1 + 2\varepsilon^2 - 2\varepsilon^4 + o(\varepsilon^5)} \quad \text{as} \quad \varepsilon \to 0 + \varepsilon^5 + \varepsilon^2 + \varepsilon$$

and by Lemma 1 with b = -1 we have

$$t = \left(\frac{1}{2} + 2\varepsilon + \varepsilon^2 - 2\varepsilon^3 - \varepsilon^4 - 2\varepsilon^5 + o(\varepsilon^5)\right) (1 - 2\varepsilon^2 + 6\varepsilon^4 + o(\varepsilon^5))$$
$$= \frac{1}{2} + 2\varepsilon - 6\varepsilon^3 + 14\varepsilon^5 + o(\varepsilon^5) \quad \text{as} \quad \varepsilon \to 0 + .$$

By the finite-dimensional Spectral Theorem we have $|A + iB| = \sqrt{\lambda_1}R^{(t,1)} + \sqrt{\lambda_2}R^{(1-t,-1)}$, where

$$\sqrt{\lambda_1} = 1 + \varepsilon^2 + o(\varepsilon^3), \quad \sqrt{\lambda_2} = \varepsilon^2 + o(\varepsilon^3) \quad \text{as} \quad \varepsilon \to 0 + \varepsilon^3$$

by Lemma 1 with b = 1/2 and via the relation $\varepsilon^k o(\varepsilon^m) = o(\varepsilon^{k+m})$ as $\varepsilon \to 0+$ for all $k, m \in \mathbb{N}$. Hence

$$\begin{aligned} \varphi(|A + \mathbf{i}B|) &= \operatorname{tr}(S_{\varphi}|A + \mathbf{i}B|) = \sqrt{\lambda_1} \operatorname{tr}(S_{\varphi}R^{(t,1)}) + \sqrt{\lambda_2} \operatorname{tr}(S_{\varphi}R^{(1-t,-1)}) \\ &= \sqrt{\lambda_1} \left(\left(\frac{1}{2} - s\right)t + \left(\frac{1}{2} + s\right)(1-t) \right) + \sqrt{\lambda_2} \left(\left(\frac{1}{2} - s\right)(1-t) + \left(\frac{1}{2} + s\right)t \right) \\ &= \frac{1}{2} + \varepsilon^2 - 4s\varepsilon + 12s\varepsilon^3 + o(\varepsilon^3) \quad \text{as} \quad \varepsilon \to 0 + . \end{aligned}$$

Now the inequality $\varphi(A) \leq \varphi(|A + iB|)$ turns into

$$\frac{1}{2} - 2s\varepsilon \le \frac{1}{2} + \varepsilon^2 - 4s\varepsilon + 12s\varepsilon^3 + o(\varepsilon^3)$$
 as $\varepsilon \to 0 + .$

It holds for all ε , $0 < \varepsilon < \frac{1}{2}$, for s = 0 only. The assertion is proved.

Corollary 1. For a positive normal linear functional φ on a von Neumann algebra \mathcal{A} the following conditions are equivalent:

(i) φ is tracial; (ii) $\varphi(|X - \operatorname{Re} X|) \leq \varphi(|X - Y|)$ for all $X \in \mathcal{A}$ and $Y \in \mathcal{A}^{sa}$, where $\operatorname{Re} X = (X + X^*)/2$. *Proof.* (i) \Rightarrow (ii). By [30], for all $A, B \in \mathcal{A}$ there exist partial isometries $U, V \in \mathcal{A}$ such that $|A + B| \leq U|A|U^* + V|B|V^*$.

Hence $\varphi(|A \pm B|) \leq \varphi(|A|) + \varphi(|B|)$ for all $A, B \in \mathcal{A}$. If A = W|A| is the polar decomposition of the operator A then $W^*W \leq I$, $|A^*| = W|A|W^*$ and $\varphi(|A^*|) = \varphi(W|A|W^*) = \varphi(|A|^{1/2}W^*W|A|^{1/2}) \leq \varphi(|A|)$ by monotonicity of φ on the cone \mathcal{A}^+ . By changing the roles of A and A^* , and taking into account the equality $(A^*)^* = A$, we obtain $\varphi(|A|) \leq \varphi(|A^*|)$. Thus $\varphi(|A|) = \varphi(|A^*|)$ for every $A \in \mathcal{A}$. Under this fact and the triangle inequality, we have

$$\varphi\left(\left|X - \frac{1}{2}(X + X^*)\right|\right) = \frac{1}{2}\varphi(|X - X^*|) = \frac{1}{2}\varphi(|X - Y + Y - X^*|)$$

$$\leq \frac{1}{2}(\varphi(|X - Y|) + \varphi(|(X - Y)^*|)) = \varphi(|X - Y|).$$

(ii) \Rightarrow (i). Let us put X = iA for $A \in \mathcal{A}^+$. Then |X| = A, $\operatorname{Re} X = 0$ and for all $Y \in \mathcal{A}^{\operatorname{sa}}$ we have $\varphi(|X|) \leq \varphi(|iA - Y|) = \varphi(|A + iY|),$

since |iA - Y| = |-i(iA - Y)| = |A + iY|. Thus $\varphi(A) \le \varphi(|A + iY|)$ for all $A \in A^+$, $Y \in A^{sa}$ and we apply Theorem 1. This completes the proof. \Box

Corollary 2 (cf. [8]). Let φ be a positive normal linear functional on a von Neumann algebra \mathcal{A} . If $|\varphi(X)| \leq \varphi(|X|)$ for all $X \in \mathcal{A}$ with $ReX \geq 0$ then φ is tracial.

Proof. If $X \in \mathcal{A}$ and in the Cartesian decomposition X = A + iB the operator A is positive then $\varphi(A) \in \mathbb{R}^+$, $\varphi(B) \in \mathbb{R}$ and $\varphi(A) \leq |\varphi(A + iB)|$. Since by assumption $|\varphi(A + iB)| \leq \varphi(|A + iB|)$, we have $\varphi(A) \leq \varphi(|A + iB|)$ for all $A \in \mathcal{A}^+$, $B \in \mathcal{A}^{sa}$ and apply Theorem 1. \Box

Note that Corollary 2 strengthens the Gardner's characterization [8].

Corollary 3. For a von Neumann algebra A the following conditions are equivalent:

(i) *the algebra A is Abelian*;

(ii) $\varphi(A) \leq \varphi(|A + iB|)$ for all normal states φ on A and $A \in A^+$, $B \in A^{sa}$.

(iii) $\varphi(|X - \operatorname{Re} X|) \leq \varphi(|X - Y|)$ for all normal states φ on \mathcal{A} and $X \in \mathcal{A}, Y \in \mathcal{A}^{\operatorname{sa}}$.

Proof. (ii) \Rightarrow (i). By Theorem 1 every normal state on \mathcal{A} is tracial, i.e., $\varphi(XY) = \varphi(YX)$ for all $X, Y \in \mathcal{A}$. Since the set of all normal states separates the points of the algebra \mathcal{A} [25, Chap. III, Theorem 2.4.5], the last condition implies that XY = YX ($X, Y \in \mathcal{A}$), and thus the von Neumann algebra \mathcal{A} is commutative.

For (iii) \Rightarrow (i) we apply Corollary 1 instead of Theorem 1.

Corollary 4. Let φ be a normal semifinite weight on a von Neumann algebra \mathcal{A} such that $\varphi(A) \leq \varphi(|A + iB|)$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$ (or $\varphi(|X - ReX|) \leq \varphi(|X - Y|)$ for all $X \in \mathcal{A}$ and $Y \in \mathcal{A}^{sa}$). Then φ is a trace.

Proof. It follows by Theorem 1 (respectively, by Corollary 1) that for every projection $T \in \mathcal{A}^{\text{pr}}$ with $\varphi(T) < \infty$ the reduced weight φ_T on the reduced algebra $T\mathcal{A}T$ is a trace. Hence φ is a trace by [31, Lemma 2].

For other trace characterizations see [29, 31–37] and references therein.

Theorem 2. Let φ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{A} . Then $\varphi(A) \leq \varphi(|A + iB|)$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$.

Proof. For every $X \in A$, the generalised singular value function $\mu(X)$, given by $t \mapsto \mu(t, X)$ for $t \in (0, +\infty)$, is defined by the formula (see, e.g., [38, 39])

$$\mu(t, X) = \inf\{||XP||: P \in \mathcal{A}^{\mathrm{pr}}, \ \varphi(P^{\perp}) \le t\}.$$

By Proposition 3 of [40] we have $\mu(t, A) \leq \mu(t, |A + iB|)$ for all $A \in \mathcal{A}^+$, $B \in \mathcal{A}^{sa}$ and $t \in (0, +\infty)$. Therefore,

$$\varphi(A) = \int_{0}^{+\infty} \mu(t, A) dt \le \int_{0}^{+\infty} \mu(t, |A + \mathbf{i}B|) dt = \varphi(|A + \mathbf{i}B|).$$

The assertion is proved.

Theorem 3. Let $||| \cdot |||$ be a unitarily invariant norm on a unital C^* -algebra \mathcal{A} . Then $|||\mathcal{A}||| \leq |||\mathcal{A} + iB|||$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$.

Proof. Recall that $|||Z||| = |||Z^*||| = ||||Z||||$ for all $Z \in A$. By [24, Theorem IX.7.1] we have

$$|||X - \operatorname{Re} X||| \le |||X - Y|||$$
 for all $X \in \mathcal{A}$ and $Y \in \mathcal{A}^{\operatorname{sa}}$.

Let us put X = iA for $A \in \mathcal{A}^+$. Then |X| = A, $\operatorname{Re} X = 0$ and for all $B \in \mathcal{A}^{\operatorname{sa}}$ we have

$$|||A||| = ||||X|||| = |||X||| = |||X - \operatorname{Re} X||| \le |||X - B||| = |||iA - B||| = |||A + iB|||,$$

since |iA - B| = |-i(iA - B)| = |A + iB|. Thus $|||A||| \le |||A + iB|||$ for all $A \in \mathcal{A}^+$ and $B \in \mathcal{A}^{sa}$. \Box

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

FUNDING

The work was carried out as part of the development program of the Scientific and Educational Mathematical Center of the Volga Federal District, agreement no. 075-02-2020-1478.

REFERENCES

- 1. S. A. Abed, "An inequality for projections and convex functions," Lobachevskii J. Math. 39 (9), 1287–1292 (2018).
- 2. A. M. Bikchentaev, "Commutation of projections and characterization of traces on von Neumann algebras. III," Int. J. Theor. Phys. 54, 4482-4493 (2015).
- 3. A. M. Bikchentaev, "Inequality for a trace on a unital C^* -algebra," Math. Notes **99**, 487–491 (2016).
- A. M. Bikchentaev, "Differences of idempotents in C*-algebras," Sib. Math. J. 58, 183–189 (2017).
 A. M. Bikchentaev, "Differences of idempotents in C*-algebras and the quantum Hall effect," Theor. Math. Phys. 195, 557-562 (2018).
- 6. A. M. Bikchentaev and A. N. Sherstney, "Studies on noncommutative measure theory in Kazan University (1968–2018)," Int. J. Theor. Phys. 60, 585–596 (2021).
- 7. A. M. Bikchentaev, "Trace and differences of idempotents in C^* -algebras," Math. Notes 105, 641–648 (2019).
- 8. L. T. Gardner, "An inequality characterizes the trace," Canad. J. Math. 31, 1322–1328 (1979).
- 9. D. T. Hoa and O. E. Tikhonov, "Weighted monotonicity inequalities for traces on operator algebras," Math. Notes 88, 177–182 (2010).
- 10. D. T. Hoa, H. Osaka, and H. M. Toan, "On generalized Powers-Størmer's inequality," Linear Algebra Appl. 438, 242-249 (2013).
- 11. D. Petz and J. Zemánek, "Characterizations of the trace," Linear Algebra Appl. 111, 43–52 (1988).
- 12. M. Takesaki, Theory of Operator Algebras (Springer, Berlin, 2002), Vol. 1.
- 13. S. M. Manjegani, "Inequalities in operator algebras," PhD Thesis (Regina Univ., Regina, Canada, 2004).
- M. Ruskai, "Inequalities for traces on von Neumann algebras," Commun. Math. Phys. 26, 280–289 (1972).
 H. Araki, "On an inequality of Lieb and Thirring," Lett. Math. Phys. 19, 167–170 (1990).
- 16. B. Simon, Trace Ideals and their Applications, 2nd ed., Vol. 120 of Mathematical Surveys and Monographs (Am. Math. Soc., Providence, RI, 2005).
- 17. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by Young's inequality," J. Inequal. Pure Appl. Math. 6 (2), 49 (2005).
- 18. A. M. Bikchentaev and O. E. Tikhonov, "Characterization of the trace by monotonicity inequalities," Linear Algebra Appl. 422, 274-278 (2007).
- 19. A. M. Bikchentaev, "Commutativity of projections and characterization of traces on von Neumann algebras," Sib. Math. J. 51, 971-977 (2010).
- 20. A. M. Bikchentaev, "Commutation of projections and trace characterization on von Neumann algebras. II," Math. Notes 89, 461-471 (2011).
- 21. A. M. Bikchentaev, "The Peierls-Bogoliubov inequality in C^* -algebras and characterization of tracial functionals," Lobachevskii J. Math. 32 (3), 175-179 (2011).
- 22. A. M. Bikchentaev, "Commutativity of operators and characterization of traces on C*-algebras," Dokl. Math. 87, 79-82 (2013).
- 23. K. Cho and T. Sano, "Young's inequality and trace," Linear Algebra Appl. 431, 1218–1222 (2009).
- 24. R. Bhatia, Matrix Analysis, Vol. 169 of Graduate Texts in Mathematics (Springer, New York, 1997).
- 25. B. Blackadar, "Operator algebras, theory of C*-algebras and von Neumann algebras," in Encyclopaedia of Mathematical Sciences, Vol. 122: Operator Algebras and Non-commutative Geometry, III (Springer, Berlin, 2006).
- 26. M. Takesaki, Theory of Operator Algebras II, Vol. 125 of Encyclopaedia Math. Sci. (Springer, New York, 2003).
- 27. H. Upmeier, "Automorphism groups of Jordan C*-algebras," Math. Z. 176, 21–34 (1981).
- 28. Sh. A. Ayupov, Classification and Representation of Ordered Jordan Algebras (Fan, Tashkent, 1986) [in Russian].
- 29. O. E. Tikhonov, "Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals," Positivity 9, 259-264 (2005).
- 30. C. A. Akemann, J. Anderson, and G. K. Pedersen, "Triangle inequalities in operator algebras," Linear Multilinear Algebra 11, 167–178 (1982).
- 31. A. I. Stolyarov, O. E. Tikhonov, and A. N. Sherstnev, "Characterization of normal traces on von Neumann algebras by inequalities for the modulus," Math. Notes **72**, 411–416 (2002).
- 32. A. M. Bikchentaev, "On a property of L_p -spaces on semifinite von Neumann algebras," Math. Notes 64, 159-163 (1998).

- A. M. Bikchentaev, "Metrics on projections of the von Neumann algebra associated with tracial functionals," Sib. Math. J. 60, 952–956 (2019).
- 34. A. M. Bikchentaev and S. A. Abed, "Projections and traces on von Neumann algebras," Lobachevskii J. Math. **40** (9), 1260–1267 (2019).
- A. M. Bikchentaev, "Inequalities for determinants and characterization of the trace," Sib. Math. J. 61, 248– 254 (2020).
- 36. D. T. Hoa and O. E. Tikhonov, "Weighted trace inequalities of monotonicity," Lobachevskii J. Math. 26, 63–67 (2007).
- 37. An. An. Novikov and O. E. Tikhonov, "Characterization of central elements of operator algebras by inequalities," Lobachevskii J. Math. **36** (2), 208–210 (2015).
- 38. T. Fack and H. Kosaki, "Generalized *s*-numbers of τ -measurable operators," Pacif. J. Math. **123**, 269–300 (1986).
- 39. S. Lord, F. Sukochev, and D. Zanin, *Singular Traces. Theory and Applications*, Vol. 46 of *De Gruyter Studies in Mathematics* (De Gruyter, Berlin, 2013).
- 40. F. A. Sukochev and V. I. Chilin "The triangle inequality for operators that are measurable with respect to Hardy-Littlewood order," Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 44-50 (1988).