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Abstract—It is proved that the inequality

ϕ(A) ≤ ϕ(|A+ iB|) for all A ∈ A+ and B ∈ Asa

characterizes tracial functionals among all positive normal functionals ϕ on a von Neumann algebra
A. This strengthens the L. T. Gardner’s characterization (1979). As a consequence, a criterion for
commutativity of von Neumann algebras is obtained. Also we give a characterization of traces in a
wide class of weights on a von Neumann algebra via this inequality. Every faithful normal semifinite
trace ϕ on a von Neumann algebra A satisfies this relation. Let ||| · ||| be a unitarily invariant norm
on a unital C∗-algebra A. Then |||A||| ≤ |||A+ iB||| for all A ∈ A+ and B ∈ Asa.

DOI: 10.1134/S1995080221100024

Keywords and phrases: Hilbert space, linear operator, von Neumann algebra, C∗-algebra,
weight, trace, tracial inequality.

1. INTRODUCTION

Dimension functions and traces on C∗-algebras are fundamental tools in the operator theory and
its applications. Hence the problem of characterization of traces in a wide classes of weights on C∗-
algebras is important and attracts the attention of a large group of mathematicians, see [1–11].

If ϕ is a tracial positive normal linear functional on a von Neumann algebra A, and p, q are positive
numbers such that 1/p + 1/q = 1, then the following hold:

• Hölder’s inequality [12, Chapter IX, Theorem 2.13], [11, Theorem 5]:

ϕ(|XY |) ≤ ϕ(Xp)1/pϕ(Y q)1/q for all X,Y ∈ A+;

• Cauchy–Schwarz–Buniakowski inequality [13, Theorem 4.21]:

ϕ(|XY |1/2) ≤ ϕ(X)1/2ϕ(Y )1/2 for all X,Y ∈ A+;

• Golden–Thompson inequality [14, Theorem 4]:

ϕ(eX+Y ) ≤ ϕ(eX/2eY eX/2) for all X,Y ∈ Asa;

• Peierls–Bogoliubov inequality [14, Theorem 7]:

ϕ(eX ) exp
ϕ(eX/2Y eX/2)

ϕ(eX )
≤ ϕ(eX+Y ) for all X,Y ∈ A+.
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H. Araki in [15] has proved the following inequality:

tr((X1/2Y X1/2)rp) ≤ tr((Xr/2Y rXr/2)p), r ≥ 1, p > 0.

Here X, Y are positive operators on a Hilbert space H. This inequality generalizes the Lieb and Thirring
inequalities, and is close in spirit to the Golden–Thompson inequality (see [16, § 8]).

In general any natural trace inequality is sharp in the sense that the trace is the only (positive
linear) functional that satisfies the inequality. It is well-known that either of inequalities: Hölder,
Cauchy–Schwarz–Buniakowski, Golden–Tompson, Peierls–Bogoliubov, Araki–Lieb–Thirring etc.,
limited only to projections characterizes the tracial functionals among all positive normal functionals ϕ
on a von Neumann algebra A, see [17–23].

In this paper, we characterize the trace via the well-known inequality

ϕ(A) ≤ ϕ(|A+ iB|) for all A ∈ A+ and B ∈ Asa, (1)

where i ∈ C with i2 = −1 (Theorem 1). It is shown that this strengthens the Gardner’s characteriza-
tion [8] (Corollary 2). As a consequence, a criterion for commutativity of von Neumann algebras is
obtained (Corollary 3). Also we give a characterization of traces in a wide class of weights on a von
Neumann algebra via inequality (1) (Corollary 4). Every faithful normal semifinite trace ϕ on a von
Neumann algebra A satisfies relation (1) (Theorem 2). Let ||| · ||| be a unitarily invariant norm on a
unital C∗-algebra A. Then |||A||| ≤ |||A+ iB||| for all A ∈ A+ and B ∈ Asa (Theorem 3). Recall one
interesting fact in the finite-dimensional case:

If the matrix A ∈ Mn(C) in the Cartesian decomposition T = A+ iB is positive then for determinants
we have |detT | ≥ detA, see [24, Corollary VI.7.5].

2. DEFINITIONS AND NOTATION

A C∗-algebra is a complex Banach ∗-algebra A such that ||A∗A|| = ||A||2 for all A ∈ A. For a C∗-
algebra A by Apr, Asa and A+ we denote its subsets of projections (A = A∗ = A2), Hermitian elements
(A∗ = A) and positive elements, respectively. If A ∈ A, then |A| =

√
A∗A ∈ A+. If I is the unit of the

algebra A and P ∈ Apr then P⊥ = I − P .

A mapping ϕ : A+ → [0,+∞] is called a weight on a C∗-algebra A, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ),
ϕ(λX) = λϕ(X) for all X,Y ∈ A+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0). For a weight ϕ define

M
+
ϕ = {X ∈ A+ : ϕ(X) < +∞}, Mϕ = linCM

+
ϕ .

The restriction ϕ|
M

+
ϕ

can always be extended by linearity to a functional on Mϕ, which we denote by

the same letter ϕ. Such an extension allows us to identify finite weights (i.e., ϕ(X) < +∞ for all
X ∈ A+) with positive functionals on A. A positive linear functional ϕ on A with ||ϕ|| = 1 is called
a state. A weight ϕ is called faithful, if ϕ(X) = 0 (X ∈ A+) ⇒ X = 0; a trace, if ϕ(Z∗Z) = ϕ(ZZ∗)
for all Z ∈ A. A trace ϕ on a C∗-algebra A is called semifinite, if ϕ(A) = sup{ϕ(B) : B ∈ A+, B ≤
A, ϕ(B) < +∞} for every A ∈ A+.

Let H be a Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H.
By Gelfand–Naimark theorem every C∗-algebra is isometrically isomorphic to a concrete C∗-algebra of
operators on a Hilbert space H [25, II.6.4.10]. By the commutant of a set X ⊂ B(H) we mean the set

X ′ = {Y ∈ B(H) : XY = Y X for all X ∈ X}.
A ∗-subalgebra A of the algebra B(H) is said to be a von Neumann algebra acting on a Hilbert space H,
if A = A′′. For P,Q ∈ Apr we write P ∼ Q (the Murray–von Neumann equivalence), if P = U∗U and
Q = UU∗ for some U ∈ A.

A weight ϕ on von Neumann algebra A is called normal, if Xi ↗ X (Xi,X ∈ A+) =⇒ ϕ(X) =
supϕ(Xi); semifinite, if the set Mϕ is ultraweakly dense in A (see [26, Definition VII.1.1]).

Using Upmeier’s results [27], it is actually proved in [28, Theorem 1.4.2]Ayu86 that a weight on a von
Neumann algebra A is a trace if and only if ϕ(SAS) = ϕ(A) for any A ∈ A+ and a symmetry S ∈ Asa.
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3. TRACE CHARACTERIZATION ON VON NEUMANN ALGEBRAS

Let us recall Taylor’s formula with Peano’s remainder.
Lemma 1. If b ∈ R then

(1 + x)b = 1 + bx+
1

2!
b(b− 1)x2 + . . .+

1

n!
b(b− 1) · · · (b− n+ 1)xn + o(xn) as x → 0.

Theorem 1. For a positive normal linear functional ϕ on a von Neumann algebra A the
following conditions are equivalent:

(i) ϕ is tracial;
(ii) ϕ(A) ≤ ϕ(|A + iB|) for all A ∈ A+ and B ∈ Asa, where i ∈ C with i2 = −1.
Proof. (i) ⇒ (ii). The finite traces on a C∗-algebra A are precisely those (positive) linear functionals

ϕ on A which satisfy |ϕ(X)| ≤ ϕ(|X|) for all X ∈ A, see [8]. Since ϕ(A) ∈ R
+ and ϕ(B) ∈ R, we have

ϕ(A) ≤ |ϕ(A+ iB)|.
Let us show that for an arbitrary von Neumann algebra, the proof of the inverse implication (i.e.,

(ii) ⇒ (i)) can be reduced to the case of the algebra M2(C) just as this was done in a number of other
similar cases (see [8] or [29]).

It is well known [8] that a positive normal linear functional ϕ on a von Neumann algebra A is tracial if
and only if ϕ(P ) = ϕ(Q) for all P,Q ∈ Apr with PQ = 0 and P ∼ Q (also see [29, Lemma 2]). Assume
that a *-algebra N in the reduced algebra (P +Q)A(P +Q) is generated by a partial isometry V ∈ A
realizing the equivalence of P and Q. Then N is ∗-isomorphic to M2(C), while inequality (ii) remains
valid for operators fromN and the restriction of the functional ϕ|N . We shall show that such a restriction
is a tracial functional on N ; therefore, ϕ(P ) = ϕ(Q).

As it is well known, every linear functional ϕ on M2(C) can be represented in the form ϕ(·) = tr(Sϕ·).
The two-by-two matrix Sϕ is called the density matrix ofϕ. It is easily seen that without loss of generality
we can assume that

Sϕ = diag
(
1

2
− s,

1

2
+ s

)
, 0 ≤ s ≤ 1

2
.

Thus ϕ(X) equals (1/2− s)x11 + (1/2 + s)x22 for X = [xij]
2
i,j=1 in M2(C).

Let δ ∈ C with |δ| = 1 and 0 ≤ t ≤ 1. By R(t,δ) we denote the projection

R(t,δ) =

⎛
⎝ t δ

√
t− t2

δ̄
√
t− t2 1− t

⎞
⎠ ∈ M2(C).

Let us put A = R(1/2+ε,1) and

B =

⎛
⎝ 0 iε

−iε 0

⎞
⎠

for 0 < ε < 1/2. Then ϕ(A) = tr(SϕA) = (1/2 − s)(1/2 + ε) + (1/2 + s)(1/2 − ε) = 1/2 − 2sε. Put
f(ε) =

√
1/4− ε2, then the matrix

|A+ iB|2 =

⎛
⎝1

2 + ε+ ε2 + 2εf(ε) f(ε)− 2ε2

f(ε)− 2ε2 1
2 − ε+ ε2 − 2εf(ε)

⎞
⎠

has the characteristic equation λ2 − (1 + 2ε2)λ+ ε4 = 0. Therefore,

λ1 =
1 + 2ε2 +

√
1 + 4ε2

2
and λ2 =

1 + 2ε2 −
√
1 + 4ε2

2
.

By the Taylor’s formula with the reminder in the Peano form (see Lemma 1 with b = 1/2) we obtain

f(ε) =
1

2

√
1− 4ε2 =

1

2
− ε2 − ε4 + o(ε5),

√
1 + 4ε2 = 1 + 2ε2 − 2ε4 + o(ε5) as ε → 0 + .
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Hence

λ1 = 1 + 2ε2 − ε4 + o(ε5), λ2 = ε4 + o(ε5) as ε → 0 + .

Let us represent by the finite-dimensional Spectral Theorem

|A+ iB|2 = λ1R
(t,1) + λ2R

(t,1)⊥ = λ1R
(t,1) + λ2R

(1−t,−1)

and find the unknown parameter t ∈ [0, 1] from the equation

1

2
+ ε+ ε2 + 2εf(ε) = λ1t+ λ2(1− t), i.e.,

1

2
+ 2ε+ ε2 − 2ε3 − 2ε5 + o(ε5) = (1 + 2ε2 − ε4 + o(ε5))t+ (ε4 + o(ε5))(1 − t) as ε → 0 + .

Thus

t =
1
2 + 2ε+ ε2 − 2ε3 − ε4 − 2ε5 + o(ε5)

1 + 2ε2 − 2ε4 + o(ε5)
as ε → 0+

and by Lemma 1 with b = −1 we have

t =

(
1

2
+ 2ε+ ε2 − 2ε3 − ε4 − 2ε5 + o(ε5)

)
(1 − 2ε2 + 6ε4 + o(ε5))

=
1

2
+ 2ε− 6ε3 + 14ε5 + o(ε5) as ε → 0 + .

By the finite-dimensional Spectral Theorem we have |A+ iB| =
√
λ1R

(t,1) +
√
λ2R

(1−t,−1), where√
λ1 = 1 + ε2 + o(ε3),

√
λ2 = ε2 + o(ε3) as ε → 0+

by Lemma 1 with b = 1/2 and via the relation εko(εm) = o(εk+m) as ε → 0+ for all k,m ∈ N. Hence

ϕ(|A+ iB|) = tr(Sϕ|A+ iB|) =
√

λ1tr(SϕR
(t,1)) +

√
λ2tr(SϕR

(1−t,−1))

=
√

λ1

((
1

2
− s

)
t+

(
1

2
+ s

)
(1− t)

)
+

√
λ2

((
1

2
− s

)
(1− t) +

(
1

2
+ s

)
t

)

=
1

2
+ ε2 − 4sε+ 12sε3 + o(ε3) as ε → 0 + .

Now the inequality ϕ(A) ≤ ϕ(|A+ iB|) turns into

1

2
− 2sε ≤ 1

2
+ ε2 − 4sε+ 12sε3 + o(ε3) as ε → 0 + .

It holds for all ε, 0 < ε < 1
2 , for s = 0 only. The assertion is proved. �

Corollary 1. For a positive normal linear functional ϕ on a von Neumann algebra A the
following conditions are equivalent:

(i) ϕ is tracial;
(ii) ϕ(|X − ReX|) ≤ ϕ(|X − Y |) for all X ∈ A and Y ∈ Asa, where ReX = (X +X∗)/2.
Proof. (i) ⇒ (ii). By [30], for all A,B ∈ A there exist partial isometries U, V ∈ A such that

|A+B| ≤ U |A|U∗ + V |B|V ∗.

Hence ϕ(|A±B|) ≤ ϕ(|A|) + ϕ(|B|) for all A,B ∈ A. If A = W |A| is the polar decomposition of the
operator A then W ∗W ≤ I, |A∗| = W |A|W ∗ and ϕ(|A∗|) = ϕ(W |A|W ∗) = ϕ(|A|1/2W ∗W |A|1/2) ≤
ϕ(|A|) by monotonicity of ϕ on the cone A+. By changing the roles of A and A∗, and taking into
account the equality (A∗)∗ = A, we obtain ϕ(|A|) ≤ ϕ(|A∗|). Thus ϕ(|A|) = ϕ(|A∗|) for every A ∈ A.
Under this fact and the triangle inequality, we have

ϕ

(∣∣∣∣X − 1

2
(X +X∗)

∣∣∣∣
)

=
1

2
ϕ(|X −X∗|) = 1

2
ϕ(|X − Y + Y −X∗|)
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≤ 1

2
(ϕ(|X − Y |) + ϕ(|(X − Y )∗|)) = ϕ(|X − Y |).

(ii) ⇒ (i). Let us put X = iA for A ∈ A+. Then |X| = A, ReX = 0 and for all Y ∈ Asa we have

ϕ(|X|) ≤ ϕ(|iA− Y |) = ϕ(|A + iY |),

since |iA− Y | = | − i(iA− Y )| = |A+ iY |. Thus ϕ(A) ≤ ϕ(|A+ iY |) for all A ∈ A+, Y ∈ Asa and we
apply Theorem 1. This completes the proof. �

Corollary 2 (cf. [8]). Let ϕ be a positive normal linear functional on a von Neumann algebra A.
If |ϕ(X)| ≤ ϕ(|X|) for all X ∈ A with ReX ≥ 0 then ϕ is tracial.

Proof. If X ∈ A and in the Cartesian decomposition X = A+ iB the operator A is positive then
ϕ(A) ∈ R

+, ϕ(B) ∈ R and ϕ(A) ≤ |ϕ(A+ iB)|. Since by assumption |ϕ(A + iB)| ≤ ϕ(|A+ iB|), we
have ϕ(A) ≤ ϕ(|A + iB|) for all A ∈ A+, B ∈ Asa and apply Theorem 1. �

Note that Corollary 2 strengthens the Gardner’s characterization [8].
Corollary 3. For a von Neumann algebra A the following conditions are equivalent:
(i) the algebra A is Abelian;
(ii) ϕ(A) ≤ ϕ(|A + iB|) for all normal states ϕ on A and A ∈ A+, B ∈ Asa.
(iii) ϕ(|X − ReX|) ≤ ϕ(|X − Y |) for all normal states ϕ on A and X ∈ A, Y ∈ Asa.
Proof. (ii) ⇒ (i). By Theorem 1 every normal state on A is tracial, i.e., ϕ(XY ) = ϕ(Y X) for all

X,Y ∈ A. Since the set of all normal states separates the points of the algebra A [25, Chap. III,
Theorem 2.4.5], the last condition implies that XY = Y X (X,Y ∈ A), and thus the von Neumann
algebra A is commutative.

For (iii) ⇒ (i) we apply Corollary 1 instead of Theorem 1. �

Corollary 4. Let ϕ be a normal semifinite weight on a von Neumann algebra A such that
ϕ(A) ≤ ϕ(|A+ iB|) for all A ∈ A+ and B ∈ Asa (or ϕ(|X − ReX|) ≤ ϕ(|X − Y |) for all X ∈ A
and Y ∈ Asa). Then ϕ is a trace.

Proof. It follows by Theorem 1 (respectively, by Corollary 1) that for every projection T ∈ Apr with
ϕ(T ) < ∞ the reduced weight ϕT on the reduced algebra TAT is a trace. Hence ϕ is a trace by [31,
Lemma 2]. �

For other trace characterizations see [29, 31–37] and references therein.
Theorem 2. Let ϕ be a faithful normal semifinite trace on a von Neumann algebra A. Then

ϕ(A) ≤ ϕ(|A+ iB|) for all A ∈ A+ and B ∈ Asa.
Proof. For every X ∈ A, the generalised singular value function μ(X), given by t �→ μ(t,X) for

t ∈ (0,+∞), is defined by the formula (see, e.g., [38, 39])

μ(t,X) = inf{||XP || : P ∈ Apr, ϕ(P⊥) ≤ t}.

By Proposition 3 of [40] we have μ(t, A) ≤ μ(t, |A+ iB|) for all A ∈ A+, B ∈ Asa and t ∈ (0,+∞).
Therefore,

ϕ(A) =

+∞∫
0

μ(t, A)dt ≤
+∞∫
0

μ(t, |A+ iB|)dt = ϕ(|A+ iB|).

The assertion is proved. �

Theorem 3. Let ||| · ||| be a unitarily invariant norm on a unital C∗-algebra A. Then |||A||| ≤
|||A+ iB||| for all A ∈ A+ and B ∈ Asa.

Proof. Recall that |||Z||| = |||Z∗||| = ||||Z|||| for all Z ∈ A. By [24, Theorem IX.7.1] we have

|||X − ReX||| ≤ |||X − Y ||| for all X ∈ A and Y ∈ Asa.

Let us put X = iA for A ∈ A+. Then |X| = A, ReX = 0 and for all B ∈ Asa we have

|||A||| = ||||X|||| = |||X||| = |||X − ReX||| ≤ |||X −B||| = |||iA−B||| = |||A+ iB|||,

since |iA−B| = | − i(iA−B)| = |A+ iB|. Thus |||A||| ≤ |||A+ iB||| for all A ∈ A+ and B ∈ Asa. �

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021



2278 ALHASAN, FAWWAZ

FUNDING

The work was carried out as part of the development program of the Scientific and Educational
Mathematical Center of the Volga Federal District, agreement no. 075-02-2020-1478.

REFERENCES
1. S. A. Abed, “An inequality for projections and convex functions,” Lobachevskii J. Math. 39 (9), 1287–1292

(2018).
2. A. M. Bikchentaev, “Commutation of projections and characterization of traces on von Neumann alge-

bras. III,” Int. J. Theor. Phys. 54, 4482–4493 (2015).
3. A. M. Bikchentaev, “Inequality for a trace on a unital C∗-algebra,” Math. Notes 99, 487–491 (2016).
4. A. M. Bikchentaev, “Differences of idempotents in C∗-algebras,” Sib. Math. J. 58, 183–189 (2017).
5. A. M. Bikchentaev, “Differences of idempotents in C∗-algebras and the quantum Hall effect,” Theor. Math.

Phys. 195, 557–562 (2018).
6. A. M. Bikchentaev and A. N. Sherstnev, “Studies on noncommutative measure theory in Kazan University

(1968–2018),” Int. J. Theor. Phys. 60, 585–596 (2021).
7. A. M. Bikchentaev, “Trace and differences of idempotents in C∗-algebras,” Math. Notes 105, 641–648

(2019).
8. L. T. Gardner, “An inequality characterizes the trace,” Canad. J. Math. 31, 1322–1328 (1979).
9. D. T. Hoa and O. E. Tikhonov, “Weighted monotonicity inequalities for traces on operator algebras,” Math.

Notes 88, 177–182 (2010).
10. D. T. Hoa, H. Osaka, and H. M. Toan, “On generalized Powers-Størmer’s inequality,” Linear Algebra Appl.

438, 242–249 (2013).
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