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Abstract—The paper presents a model of symmetric tensor C∗-category with conjugation for an object of
dimension d = 3. It is proved that the constructed conjugate object of the category satisfies the conjugation
equations, and different classes of morphisms between the objects in the modelled category are considered
and studied. This category allows for the generalization of the C∗-algebraic model of observables in
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the model, the area of quantum information transfer is explored, where the constraints imposed by the
superselection rules need to be taken into account.
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INTRODUCTION

Category theory is one of the rapidly developing
areas of mathematics. In recent times, particular
emphasis has been placed on various branches of
category theory, such as higher category theory [1],
multicategory theory [2] (see also [3]), homotopy cat-
egories [4], and others. These branches hold a special
status in gauge theories and algebraic quantum field
theory. It is difficult to imagine logic, higher algebra,
and higher geometry without category theory. The
influence of category theory has also significantly im-
pacted the development of computer science [5].

Due to the need for a rigorous description of the
superselection structure within the framework of al-
gebraic quantum field theory [6], significant progress
has been made in the theory of tensor C∗-categories.
The first stage of its substantial development occurred
in the work [7], where a new theory of duality was for-
mulated, generalizing the classical Tannaka–Krein
duality [8, 9].

The superselection structure of the theory is
closely related to internal symmetries and gives rise
to dynamical superselection rules associated with
absolutely conserved abelian or non-Abelian charges.

*E-mail: airat_vm@rambler.ru
**E-mail: dr2nikitin@gmail.com

Such symmetries are described by compact topologi-
cal groups, which in elementary particle physics cor-
respond to groups of global gauge transformations.
The spectrum (set of unitarily nonequivalent repre-
sentations) of this group forms the set of superse-
lection sectors of the considered system. Therefore,
finite-dimensional Hilbert spaces correspond to the
superselection sectors, where unitarily nonequivalent
representations of the compact group are realized.
The authors of the work [7] were able to show that
the category of finite-dimensional Hilbert spaces
hilb is isomorphic to the abstract tensor symmetric
C∗-category C.

Non-Abelian superselection charges are associa-
ted with objects in this category, and algebraic op-
erations of conjugation, permutation symmetry, and
composition can be defined over its objects. These
operations can be interpreted in physics as the transi-
tion to an antiparticle, particle statistics, and addition
of charges, respectively [10].

According to the mentioned category isomor-
phism, the abstract category serves as the dual object
to the compact group G, which is referred to as the
Doplicher–Roberts duality. Using the technique of
crossed products [11], the group G can be recon-
structed axiomatically from the quasilocal algebra of
observables A [6], without artificially introducing it
as the group of automorphisms aut(F) of the field
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algebra F = A× C. More detailed information on
this is provided below in Subsection 1.4.

Thanks to technological advancements, quantum
informatics has experienced rapid development in re-
cent years. Modern experimental techniques en-
able the implementation of experiments on the trans-
fer of quantum information encoded in the quan-
tum states of elementary particles, atoms, and even
molecules. The basic unit of quantum information
in these cases is a qubit—a two-level quantum sys-
tem. For instance, a photon with longitudinal and
transverse polarizations, an electron with two ba-
sis states, a hydrogen molecule ion H+

2 with basis
states corresponding to electron localization around
the first or second proton, an ammonia molecule
NH3 with basis states representing two mirror con-
figurations separated by a barrier and resulting from
each other by mirror reflection with respect to the
plane separating these configurations, etc., are exam-
ples of two-level quantum systems that find techni-
cal applications. It has been discovered that in the
case of two-level systems possessing Abelian or non-
Abelian gauge charges, superselection rules arise,
limiting the amount of transmitted information. This
possibility was initially noted in an unpublished work
by Popescu and has since been actively studied in
the scientific literature. An overview of the most
significant results in this field can be found in the
review article [12].

The work [13] proposed the hypothesis that, in
quantum information theory, conjugate charges may
play a significant role alongside charges. The authors
of this study investigated the role of conjugate charge
in quantum cryptography and found that a conjugate
abelian charge cannot enhance the security of cryp-
tographic protocols. However, while complete anni-
hilation with the formation of a vacuum occurs in the
case of abelian charges, the situation is much more
complex for non-Abelian charges. The composition
of a charge with its conjugate leads not only to the
formation of a vacuum sector but also to the creation
of a sector containing paraparticles. Therefore, this
issue is still considered open and further research is
required.

In the work [14], we proposed an algebraic model
to investigate the role of superselection rules in
quantum information theory. This model allowed for
demonstrating that information can be encoded using
only those states for which projectors commute with
the algebra of observables. Since these projectors
also commute with representation elements of a non-
abelian group, the recipient has the ability to fully
recover the transmitted information. However, to
study the superselection rules in the presence of a
conjugate charge within this model, further refine-
ment is required taking into account the conjugate

object. Therefore, the aim of this article is to conduct
preliminary work on modelling a symmetric tensor
C∗-category with a conjugate object for an object
dimension of d = 3, and to investigate certain classes
of morphisms within this framework.

According to the above-mentioned outline, the
article is organized as follows. Section 1 provides
preliminary information on Cuntz algebras, symmet-
ric tensor C∗-categories, and introduces some cons-
tructions that establish the connection between ab-
stract and concrete categories within the framework
of Doplicher–Roberts duality. Section 2 constitutes
the original part of the work, and its main result is the
construction of the conjugate object in the category
with dimension d = 3. It is proved that the conjuga-
tion equations hold for this object. Furthermore, a left
inverse mapping φ for the object ρ is introduced, and
the statistical parameter, an invariant of the sector, is
defined using it. The final subsections of the section
serve as preliminary and auxiliary materials, providing
additional information to the main results. Here, the
algebra of observables is constructed through condi-
tional expectation (a positive mapping from the field
algebra to the algebra of observables), and a three-
level quantum system is considered, which is used
to encode quantum information. A more detailed
analysis of information transfer using qutrits based on
the results of this work is planned to be presented in a
separate publication.

Finally, the conclusion provides a brief analysis of
the work.

1. PRELIMINARY INFORMATION

1.1. Cuntz Algebra

The Cuntz algebra, as introduced in [15], plays a
crucial role in the reconstruction of a compact group
G within the Doplicher–Roberts duality theory. It
also aids in establishing an isomorphism between the
abstract tensor C∗-categories C and the category of
representations rep(G), mentioned in the introduc-
tion. To facilitate further exposition, we will provide
here the fundamental information regarding Cuntz
algebras.

The Cuntz C∗-algebra is defined by the Cuntz
relations

ψ∗
i ψj = δijI, (1)

d∑

i

ψiψ
∗
i = I (2)

and by a scalar product

ψ∗ψ′ = 〈ψ,ψ′〉I, ψ, ψ′ ∈ H, (3)
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here, H is a complex Hilbert space of dimension
dim n ≥ 2 with an orthonormal basis {ψi}i=1,2,...,d,
where ψi are isometric operators. In other words, the
mentioned d-dimensional Hilbert space is generated
by the linear span Lin{ψi}di=1 of the multiplet of
orthogonal isometries {ψ}di=1, and it is referred to as
the canonical space.

The algebra Od can be conveniently obtained us-
ing the following construction [16]. Let hilb be the
category of tensor powers H⊗ ...⊗H︸ ︷︷ ︸

r

= Hr of d-

dimensional Hilbert spaces H = Lin{ψi}di=1, where
r ∈ Z+ and d > 1. Morphisms between tensor pow-
ers from Hs in Hr are given by linear mapping of the
form:

t = ψi1ψi2 ...ψirψ
∗
js ...ψ

∗
j2ψ

∗
j1 ∈ (Hs,Hr),

which form a complex Banach space (here and in
the future, for brevity, the tensor product symbols
between ψi ⊗ ψj will be omitted).

Let us define the inductive limit 0Ok
d of injec-

tive mappings of morphisms for each fixed value k =
0;±1;±2; ...:

(Hr,Hr+k) −→⊗1 (Hr+1,Hr+1+k) −→⊗1 ...

... −→⊗1 (Hr+n,Hr+n+k) −→⊗1 .... (4)

Then, the algebra 0Od, obtained by taking the direct
sum 0Od = ⊕0

kOk
d over all values of k, is a ∗-algebra.

Its completion under the unique C∗-norm yields
the Cuntz algebra Od. In this case, the identity of
the Cuntz algebra is defined according to the expres-
sion (2).

Let us consider a closed subgroup G of the group
of unitary operators U(H). We can then consider the
category hilbG, whose objects are G-modules Hr,
and the morphisms are G-module homomorphisms.
By repeating the previous construction (4)

(Hr,Hr+k)G −→⊗1 (Hr+1,Hr+1+k)G −→⊗1 ...

... −→⊗1 (Hr+n,Hr+n+k)G −→⊗1 ..., (5)

we obtain the Z-graded ∗-algebra 0OG = ⊕0
kOk

G.
According to [16], if G is a subgroup of the group
SU(H), then there exists a unique C∗-seminorm
(which is, in fact, a C∗-norm) on 0OG, and OG is
the C∗-algebra obtained by completing 0OG with
respect to this seminorm. In this case, the algebra
OG is simple. The spectral subspaces of the algebra
OG are defined as Ok

G = {X ∈ OG : αλ(X) = λkX},
where α is a continuous action of the circle group
on OG, turning OG into a Z-graded C∗-algebra,
X ∈ OG. It is worth noting that Ok

G are closures of
the corresponding 0Ok

G.

Without going into details, let us mention that
in the ∗-algebras 0Od and 0OG, it is possible to define
nontrivial canonical endomorphisms σ and σG, re-
spectively, which can be extended to canonical endo-
morphisms of the C∗-algebras Od and OG. Accord-
ing to expressions (1)–(2), the canonical endomor-
phism is defined as σ(X) =

∑d
i=1 ψiXψ∗

i , X ∈ Od or
X ∈ OG. If X ∈ Od, then σ(X) is called inner.

We also note that the algebra OG and its canonical
endomorphism σG define a C∗-dynamical system

(OG, σG), (6)

which plays a significant role in the Doplicher–
Roberts theory.

1.2. Symmetric Tensor C∗-Categories

Let us provide some basic information about ab-
stract symmetric tensor C∗-categories. The discus-
sion of conjugation in such categories will be deferred
until Section 3.

A category C is called a C∗-category if the set of
morphisms (ρ, ρ1) between two objects ρ, ρ1 forms
a complex Banach space, and composition between
morphisms is a bilinear mapping t, s → t ◦ s with
||t ◦ s|| ≤ ||t|| ◦ ||s||. In this category, there exists a
contravariant functor ∗ that reverses the morphisms
and acts trivially on objects. Therefore, the norm of a
morphism satisfies the C∗-property ||r∗ ◦ r|| = ||r||2
for any r ∈ (ρ, ρ1). The set of morphisms (ρ, ρ) in
the C∗-category C generates a C∗-algebra for each
ρ ∈ objC.

Tensor C∗-category C is a C∗-category equipped
with tensor product ⊗. As in the case of the cate-
gory hilb, this means that each pair of objects ρ, ρ1
corresponds to an object ρ⊗ ρ1. Additionally, C has
an identity object (unit) ι such that ρ⊗ ι = ρ = ι⊗ ρ.
Moreover, for the two morphisms t ∈ (ρ, ρ1) and s ∈
(ρ2, ρ3), there exists a morphism t× s ∈ (ρ⊗ ρ2, ρ1 ⊗
ρ3). For the special case of the category of endomor-
phisms of the algebra A, which we will use in Sec-
tion 3, the relation

(t× s) = tρ(s) = ρ1(s)t (7)

holds. Mapping t, s → t× s is associative and bilin-
ear and

1ι × t = t = t× 1ι, (t× s)∗ = t∗ × s∗.

Alternation rule

t× s ◦ t1 × s1 = (t ◦ t1)× (s ◦ s1) (8)

holds, provided that the right-hand side is defined.
Such categories are often referred to as strict

monoidal categories and are denoted by the triple
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(C,⊗, ι), where ⊗ : C × C → C is an associative bi-
linear functor (tensor product) that commutes with
the conjugation operation ∗. In a strict monoidal
category, the set of morphisms (ρ, ρ1) not only forms
the structure of a complex vector space but also has
a natural (ι, ι)-bimodule structure. The category C is
called symmetric if it exhibits permutation symmetry,
which means that there exists a mapping ε : C �
ρ1, ρ2 −→ ε(ρ1, ρ2) ∈ (ρ1 ⊗ ρ2, ρ2 ⊗ ρ1), satisfying
the conditions:

(1) ε(ρ3, ρ4) ◦ s× t = t× s ◦ ε(ρ1, ρ2),
(2) ε(ρ1, ρ2)∗ = ε(ρ2, ρ1),

(3) ε(ρ1, ρ2 ⊗ ρ) = 1ρ2 × ε(ρ1, ρ) ◦ ε(ρ1, ρ2)× 1ρ,

(4) ε(ρ1, ρ2) ◦ ε(ρ2, ρ1) = 1ρ2⊗ρ1,

here t ∈ (ρ2, ρ4), s ∈ (ρ1, ρ3). From 2–4, it follows
that for any ρ, the relation ε(ρ, ι) = ε(ι, ρ) = 1ρ holds.
Let us denote symmetric tensor categories as (C, ε).

An object ρ is called irreducible if (ρ, ρ) = CI.
The permutation symmetry for irreducible endomor-
phisms can be conveniently classified using the no-
tion of a left inverse mapping [16]. Therefore, let us
provide its definition. The left inverse mapping of an
object ρ is the set of nonzero linear mappings φρ =
{φρ

ρ1,ρ2 : (ρ⊗ ρ1, ρ⊗ ρ2) −→ (ρ1, ρ2)}, satisfying

(1) φρ
ρ3,ρ4(1ρ × t ◦ r ◦ 1ρ × s∗) = t ◦ φρ

ρ1,ρ2(r) ◦ s∗,
(2) φρ

ρ1⊗ρ3,ρ2⊗ρ3(r × 1ρ3) = φρ
ρ1,ρ2(r)× 1ρ3 ,

(3) φρ
ρ1,ρ1(s

∗
1 ◦ s1) ≥ 0,

(4) φρ
ι,ι(1ρ) = 1ι,

here s ∈ (ρ1, ρ3), t ∈ (ρ2, ρ4), r ∈ (ρ⊗ ρ1, ρ⊗ ρ2),
and s1 ∈ (ρ⊗ ρ1, ρ⊗ ρ1). C is said to have a left
inverse if every object in this category has a left
inverse mapping.

1.3. Doplicher–Roberts Algebra
Let us briefly outline the scheme for constructing

a C∗-algebra using the object ρ of the C-category [7].
This algebra is commonly referred to as the Dopli-
cher–Roberts algebra and denoted as Oρ. The algeb-
ra Oρ is essentially isomorphic to the algebra OG.

Let us consider, for arbitrary k ∈ Z, the Banach
space Ok

ρ defined as the inductive limit (see also (4)
and (5)):

... −→⊗1 (ρr, ρr+k) −→⊗1 (ρr+1, ρr+k+1) −→⊗1 ....

The direct sum 0Oρ = ⊕kOk
ρ is a ∗-algebra, and its

completion with respect to the C-norm yields the C∗-
algebra Oρ. A detailed description of this algebra from
a mathematical perspective, as well as the intricacies
of its generation using the C-category, are presented
in the work [7].

1.4. Some Constructions

As mentioned in the introduction, the isomor-
phism between the abstract symmetric tensor
C∗-categories discussed in Subsection 1.2 for the
symmetric tensor C∗-categories of finite-dimensional
continuous unitary representations of a compact Lie
group is a consequence of the Doplicher–Roberts
duality theory [7]. From a physical perspective, the
category that describes the superselection structure
is a symmetric tensor C∗-category of localized and
transportable endomorphisms ρ of a quasilocal unital
C∗-algebra A with an identity and a trivial center.
In this category, objects are not necessarily asso-
ciated with finite-dimensional Hilbert spaces, and
morphisms are not associated with linear mappings
between them. Such endomorphisms, for which
composition, permutation symmetry, and conjuga-
tion are defined, form a semigroup. However, in the
work [11], it is shown that these endomorphisms
correspond to Hilbert spaces Hρ in the crossed
product A× C, which can be associated with a field
C∗-algebra F = A× C in a physical sense. In
these spaces, the irreducible representations of the
group G are realized, and the morphisms correspond
to G-module homomorphisms. The algebra A is
a poitwise fixed subalgebra of F with respect to
the action of the group G ⊆ aut(F), where aut(F)
is the group of automorphisms of the algebra F .
Since the spaces Hρ are generated by isometries,
the Cuntz algebras Od play an important role in the
formulation of the Doplicher–Roberts duality, and
many constructions in the abstract category C can
be visually described using the isometries (1)–(2).
It is also worth noting that the proof of the isomor-
phism between the C∗-dynamical system (6) and the
C∗-dynamical system (A, ρ) in the case of G ⊆
SU(d) is also a consequence of this duality [17],
where the C∗-algebra A contains the Doplicher–
Roberts algebra Oρ as a subalgebra generated by
the spaces of intertwining operators (ρr, ρs), r, s ∈ N.
In this regard, let us consider some constructions
that will allow for seeing further connections between
objects and morphisms of the isomorphic categories
hilbG and (C, ε).

As shown in [11, 16], the generating operators of
the algebras OG (G = SU(d)) for arbitrary d are the
operators

ϑ(p) =
∑

i1i2...in

ψi1 ...ψinψ
∗
ip(n)

...ψ∗
ip(1)

(9)

and

S =
1√
d!

∑

p∈Pd

sgn(p)ψp(1)...ψp(d). (10)
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Here Pn refers to the symmetric group, p ∈ Pn,
Pd ⊂ Pn.

The operator (9) is unitary and intertwines tensor
powers of the form (Hr,Hr)G in the category hilbG.
In particular, if H and H′ are two Hilbert spaces, then

ϑ(H,H′) =
∑

i,j

ψ′
iψjψ

′∗
i ψ

∗
j .

The image of the isometric operator S is the anti-
symmetric subspace in Hd = H⊗ ...⊗H︸ ︷︷ ︸

d

, where the

group SU(d) acts trivially on this subspace. In other
words, the isometry S is invariant under the action of
the group SU(d): αg(S) = S, g ∈ SU(d) and

SS∗ =
1

d!

∑

p∈Pd

sgn(p)ϑd
H(p) (11)

determines a projector onto the completely antisym-
metric subspace of the space Hd (where S∗ is the
adjoint operator). The conjugate basis can be defined
as ψ∗

i = (−1)d−1
√
dS∗ψ̂i, where

ψ̂i =
1

(d− 1)!

∑

p∈Pd(i)

sgn(p)ψp(2)...ψp(d), (12)

here Pd(i) is a subset in Pd with p(1) = i.

2. CONJUGATE OBJECT AND SECTOR
STATISTICS

In the case of an abelian compact group G, the
superselection structure of the investigated system is
determined by the discrete additive group of charac-
ters X (G), which is the dual object to the group
G [18]. The addition of two charges ρ and ρ1 corres-
ponds to the composition ρ⊗ ρ1 ≡ ρ ◦ ρ1. The conj-
ugate object ρ̄ ∈ X (G) corresponds to an antiparti-
cle, and the condition ρ̄⊗ ρ = ρ⊗ ρ̄ = ι is satisfied
(which physically corresponds to the annihilation of
a particle–antiparticle pair). Here, ι denotes the
identity element of the group. However, in the case
of a non-Abelian superselection structure, the dual
object of the compact group is a symmetric tensor
C∗-category, and the conjugation condition cannot
be interpreted in such a simple way. The key point
here is the condition for the equations of conjugation
to be satisfied for a morphism and its conjugate mor-
phism, which we will demonstrate in the next section.

Below, we will consider the symmetric tensor
C∗-category Cρ generated by a single object ρ, and we
will construct a specific conjugate object ρ̄ ∈ obj Cρ.
In doing so, we will use the notations and concepts
introduced in the first section without providing the
corresponding references.

2.1. Conjugate Object

Definition: Let C be a tensor C∗-category. An
object ρ̄ ∈ obj C is said to be conjugate to an object
ρ ∈ obj C if there exist morphisms r : ι → ρ̄⊗ ρ and
r̄ : ι → ρ⊗ ρ̄ such that the conjugation equations are
satisfied for them

r̄∗ × 1ρ ◦ 1ρ × r = 1ρ;

r∗ × 1ρ̄ ◦ 1ρ̄ × r̄ = 1ρ̄, (13)

here

r̄ = ε(ρ̄, ρ) ◦ r. (14)

Lemma 1. Let the triplet (ρ̄, r, r̄) defines the
conjunction for ρ ∈ obj C. Then, the mappings

f : s → 1ρ̄ × s ◦ r × 1ρ,

(ρ2, ρ) → (ρ, ρ̄⊗ ρ); (15)

f̃ : s′ → r̄∗ × 1ρ ◦ 1ρ × s′,

(ρ, ρ̄⊗ ρ) → (ρ2, ρ) (16)

are invertible. Here, 1ρ̄ ∈ (ρ̄, ρ̄), 1ρ ∈ (ρ, ρ), s ∈
(ρ2, ρ), s′ ∈ (ρ, ρ̄⊗ ρ), and ρ2 refers to ρ⊗ ρ.

Proof. To prove the lemma, we will use the
scheme presented in [7] for categories with arbitrary
morphisms. From the mapping (15), we have the
following expression: 1ρ̄ × (r̄∗ × 1ρ ◦ 1ρ × s′) ◦ r ×
1ρ. Noting, that 1ρ̄ × 1ρ = 1ρ̄ρ, and by applying the
alternation rule (8), we obtain the following: 1ρ̄ ×
(r̄∗ × 1ρ ◦ 1ρ × s′) ◦ r× 1ρ = 1ρ̄ × r̄∗× 1ρ ◦ (1ρ̄ρ ◦ r)×
(s′ ◦ 1ρ) = 1ρ̄ × r̄∗ × 1ρ ◦ r × s′ = 1ρ̄ × r̄∗ × 1ρ ◦ r ×
(1ρ̄ρ ◦ s′). It should be noted that r× s′ = r× 1ρ̄ρ ◦ s′.
Taking into account the second equation (13) and
taking conjugation, we obtain that 1ρ̄ × r̄∗ × 1ρ ◦ r ×
(1ρ̄ρ ◦ s′) = (1ρ̄ × r̄∗ ◦ r× 1ρ̄)× 1ρ ◦ s′ = s′ ∈ (ρ, ρ̄⊗
ρ). Hence, f : s → s′. Similarly, it is easy to verify
that f̃ = f−1 : s′ → s. The spaces (ρ2, ρ) and (ρ, ρ̄⊗
ρ) are isomorphic. The lemma is proved.

The invertibility of mappings can be shown simi-
larly:

t → t× 1ρ̄ ◦ 1ρ × r̄, (ρ2, ρ) → (ρ, ρ⊗ ρ̄); (17)

t′ → 1ρ × r∗ ◦ t′ × 1ρ, (ρ, ρ⊗ ρ̄) → (ρ2, ρ). (18)

According to the definition, to construct the
conjugate object ρ̄ satisfying equations (13), it is
necessary to have morphisms r : ι → ρ̄⊗ ρ and
r̄ : ι → ρ⊗ ρ̄. Below, we will consider a specific cate-
gory whose objects are endomorphisms of
the algebra A, and morphisms are intertwining op-
erators. Let us define the canonical endomorphism
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ρ(a) =
∑d

i ψiaψ
∗
i , where a ∈ A, ψi ∈ Od (see Sub-

sections 1.1 and 1.4). Then, we define r using the
relation r =

∑3
i=1 ψ̂iψi, where

ψ̂1 =
1√
2
(ψ2ψ3 − ψ3ψ2) ,

ψ̂2 =
1√
2
(ψ3ψ1 − ψ1ψ3) ,

ψ̂3 =
1√
2
(ψ1ψ2 − ψ2ψ1) (19)

are defined according to (12) when d = 3.

Lemma 2. r̄ =
∑3

i=1 ψiψ̂i.

Proof. In particular, for the case of the tensor
square of Hilbert spaces H⊗H′, it follows from
(9) that ϑ(p2) = ϑ(H,H′) =

∑
i,j ψ

′
iψjψ

′∗
i ψ

∗
j , i, j =

1, 2, 3. Taking into account (14) and using the equiva-
lence1) ε(ρ̄, ρ) = ϑ(Ĥ, H) =

∑
i,j ψiψ̂jψ

∗
i ψ̂

∗
j , we get

r̄ = ϑ(Ĥ,H) ◦ r = (
∑

i,j ψiψ̂jψ
∗
i ψ̂

∗
j ) ◦ (

∑3
i=1 ψiψ̂i).

Using straightforward calculations, we obtain that
r̄ =

∑3
i=1 ψiψ̂i. The lemma is proved. It is also

obvious that r̄∗ =
∑3

i=1 ψ̂
∗
i ψ

∗
i .

Let us formulate the following statement.

Statement. Let r =
∑3

i=1 ψ̂iψi and r̄ =∑3
i=1 ψiψ̂i. Then, there exists a conjugate object

ρ̄(a) =
∑3

i=1 ψ̂iaψ̂
∗
i such that rι(a) = ρ̄⊗ ρ(a)r

(a ∈ A), with conjugation equations satisfied
(13).

Proof. First, let us show that the condition
rι(a) = ρ̄⊗ ρ(a)r is satisfied (i.e., r ∈ (ι, ρ̄⊗ ρ)). The
left-hand side of this equation is given by rι(a) =

ra. Since ρ̄⊗ ρ(a) =
∑3

i=1 ψ̂iρ(a)ψ̂
∗
i , then, using

relations (19) and the expression r =
∑3

i=1 ψ̂iψi, it is
easy to see that ρ̄⊗ ρ(a) = (

∑3
i=1 ψ̂iρ(a)ψ̂

∗
i ) ◦ (r =∑3

i=1 ψ̂iψi)= (ψ̂1ψ1 + ψ̂2ψ2 + ψ̂3ψ3)a = ra. There-
fore, r ∈ (ι, ρ̄⊗ ρ).

Let us now consider the first conjugation equation
(13). We transform the expression r̄∗ × 1ρ using the
formula (7). Then, r̄∗ × 1ρ = 1ρ ◦ r̄∗. Considering
that 1ρ =

∑3
i=1 ψiψ

∗
i ∈ (ρ, ρ) and r̄∗ =

∑3
i=1 ψ̂

∗
i ψ

∗
i ,

we find the expression for 1ρ ◦ r̄∗ (due to its cumber-
someness, we do not provide it here). Transform-
ing the expression 1ρ × r, using the same formula
(7), we obtain 1ρ × r = ρ(r) ◦ 1ρ. Noting that the
composition with 1ρ on the right does not change
ρ(r), we obtain ρ(r) ◦ 1ρ = ρ(r) (Indeed, ρ(r) ◦ 1ρ =

(
∑3

i=1 ψirψ
∗
i ) ◦ (

∑3
i=1 ψiψ

∗
i )) = ρ(r)). Composing

1)Due to the mentioned isomorphism hilbG � (C, ε), see
Subsection 2.4.

1ρ ◦ r̄∗ with ρ(r) =
∑3

i=1 ψirψ
∗
i , we get (1ρ ◦ r̄∗) ◦

ρ(r) = 1ρ. The first conjugation equation is thus sat-
isfied.

The second conjugation equation is proved simi-
larly. Here we simply note that 1ρ̄ = ρ̄(1) ∈ (ρ̄, ρ̄).

Corollary. 1ρ̄ = Aρ
2, where Aρ

2 ∈ (ρ2, ρ2) is a pro-
jector onto the antisymmetric subspace of dimension
n = d− 1 (in our case d = 3).

It can be easily shown by following the general
formula [7]

Aρ
n = 1/n!

∑

p∈Pn

sgn(p)ερ(p)

when n = 2. Then, we obtain that

Aρ
2 = 1/2(1ρ2 − ε(ρ, ρ)). (20)

Since 1ρ2 = ρ2(I) = ρ(ρ(I)) =
∑3

j=1ψj(
∑3

i=1 ψi ×
ψ∗
i )ψ

∗
j and ε(ρ, ρ) = ϑ(H,H) =

∑3
i,j ψiψjψ

∗
i ψ

∗
j , Di-

rect calculation shows that 1ρ̄ = Aρ
2.

2.2. Left Inverse for ρ

Given the existence of a conjugate object in the
category, using morphisms that satisfy the conjuga-
tion equations (13), we can find a specific expression
for the left inverse mapping φ. By definition (see
Subsection 1.2), the left inverse acts according to the
rule φρ = {φρ

ρ1,ρ2 : (ρ⊗ ρ1, ρ⊗ ρ2) −→ (ρ1, ρ2)}. Let
φσ,τ (x) = s∗ × 1τ ◦ 1ρ̄ × x ◦ r × 1σ, where x ∈ (ρ⊗
σ, ρ⊗ τ) and r, s ∈ (ι, ρ̄ ⊗ ρ) [19]. We will show
now that φρ̄,ρ̄(x) ∈ (ρ̄, ρ̄). By setting s = r, where
r ∈ (ι, ρ̄⊗ ρ), we obtain

φρ̄,ρ̄(x) = r∗ × 1ρ̄ ◦ 1ρ̄ × x ◦ r × 1ρ̄, (21)

x ∈ (ρ⊗ ρ̄, ρ⊗ ρ̄). Here 1ρ̄ = ρ̄(I) =
∑3

i=1 ψ̂iψ̂
∗
i .

Since by definition (Subsection 2.1) r =
∑3

i=1 ψ̂iψi,
r∗ =

∑3
i=1 ψ

∗
i ψ̂

∗
i and according to, ρ̄(a) =∑3

i=1 ψ̂iaψ̂
∗
i , it is easy to show that

(a) r∗ × 1ρ̄ = ι(1ρ̄) ◦ r∗ = 1ρ̄ ◦ r∗ =
∑

i,j ψ̂iψ̂
∗
i ×

ψ∗
j ψ̂

∗
j (where we used the property (7)).

(b) 1ρ̄ × x = ρ̄(x) =
∑

k ψ̂kxψ̂
∗
k.

(c) Once again, using (7), we obtain

r × 1ρ̄ = r ◦ ι(1ρ̄) = r ◦ 1ρ̄ =
∑

m,n ψ̂mψmψ̂nψ̂
∗
n.

Substituting (a)–(c) into (21), we obtain

φρ̄,ρ̄(x) = 1ρ̄ ◦
∑

j

ψ∗
jxψj ◦ 1ρ̄

=
∑

j

ψ∗
jxψj ∈ (ρ̄, ρ̄). (22)
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Since x ∈ (ρ⊗ ρ̄, ρ⊗ ρ̄), this can be equivalently
represented as x = ρ(t), where t ∈ (ρ̄, ρ̄). Therefore,∑

j ψ
∗
jxψj =

∑
j

∑
i ψ

∗
jψitψ

∗
i ψj =

∑
j

∑
i δjitδij =

dt and expression (22) is the left inverse of ρ. How-
ever, the requirement φ(I) = I is not satisfied here,
that is why we introduce the normalized left inverse
by φ̃(x) = 1

dφ(x). Then, we obtain that

φ̃ρ̄,ρ̄(x) =
1

d

∑

j

ψ∗
jxψj . (23)

Let us consider the action of the left inverse
mapping on the projection operator Aρ

d=3 onto the
antisymmetric subspace of the space (ρ3, ρ3). Using
(10), we have Aρ

3 = SS∗, where S = 1√
3

∑
i ψiψ̂i,

S∗ = 1√
3

∑
j ψ̂

∗
jψ

∗
j . Then, Aρ

3 = SS∗ = 1
3

∑
i,j ψi ×

ψ̂iψ̂
∗
jψ

∗
j and using (22), we have φ(Aρ

3) =
1
3

∑
i,j,k ψ

∗
kψiψ̂iψ̂

∗
jψ

∗
jψk. Using the Cuntz relations

(1) and (2), we finally obtain φ(Aρ
3) =

1
3

∑
i ψ̂iψ̂

∗
i =

1
31ρ̄ = 1

3A
ρ
2.

2.3. Sector Statistics

The left inverse allows for describing the statistics
of the sector ρ using the statistical parameter λρ =
φ(ε(ρ, ρ)). For an irreducible ρ, we have φ(ε(ρ, ρ)) =

λρI, where λρ ∈ {0} ∪ {±d−1 : d ∈ N}, and λρ =
1
d

corresponds to a parabose statistic of order d with a
Young tableau, having column length ≤ d, λρ = −1

d
corresponds to parafermi statistics of order d with a
Young tableau with a row length ≤ d. The case λρ =
0 describes infinite statistics, which is not observed
for real particles. 2) The natural number d is called
the statistical dimension of the superselection sector,
which coincides with the concept of dimension dim(ρ)
of the object ρ of the symmetric tensor category.

In the case d = 3 for one particle, we have

φ(ε(ρ, ρ)) = φ(ϑ) =
1

3

∑

k,i,j

ψ∗
kψiψjψ

∗
i ψ

∗
jψk

=
1

3

∑

i

ψiψ
∗
i =

1

3
I,

which defines a sector with parabose statistics of
statistical dimension 3.

The definition of the statistics of multiparticle sec-
tors also requires the decomposition into a direct sum
of tensor products of endomorphisms (including their
conjugates) and the determination of 3j-symbols.
For example, for d = 3, we have the decomposition

2)This case describes anions.

ρ⊗ ρ = ρ0⊕ ρ1, where ρ0 has dimension d = 1 and ρ1
has dimension d = 8. This means that the “collision”
of two particles with d = 3 results in a Bose particle
and a particle with parastatistics of order 8. How-
ever, a detailed study of multiparticle sectors and the
classification of their statistics is only necessary when
considering specific issues related to quantum infor-
mation transfer and quantum cryptography. There-
fore, we will explore them in a separate publication
dedicated to these topics.

2.4. Algebra of Observables

The abstract tensor C∗-category of canonical en-
domorphisms Cρ that we have studied is closed under
direct sums and subobjects, and it possesses conju-
gation and symmetry. In Subsection 1.4, we men-
tioned that such a category allows for constructing
the crossed product A×C = F ⊃ A using the const-
ruction developed in [11]. This algebra contains A as
a subalgebra that remains pointwise fixed under the
action of the compact group G, where G is a closed
subgroup of the group aut(A× C). In physical terms,
the compact group G corresponds to the global gauge
group of transformations [20].

Without going into details regarding norm and
continuity, let us consider the conditional expecta-
tion, which is a positive linear mapping (an idem-
potent) onto the pointwise fixed subalgebra A with
under the action of the compact group G by m(F) =∫
αg(B)dμ(g) [16]. Here, α : g → αg , g ∈ G, αg ∈

aut(F), B ∈ F , and dμ(g) is a normalized Haar mea-
sure.

Here, αg can be defined as αgψ = u(g)ψ, where
u(g) is a unitary unimodular matrix, which, in the
case of the SU(2) group takes the form:

u(g) =

⎛

⎝ α β

−β̄ ᾱ

⎞

⎠ , (24)

whose matrix elements satisfy the condition |α|2 +
|β|2 = 1 and αᾱ + ββ̄ = 1. Since αg(A) = A, in
the case of the SU(d) group, we have αgρ(A) =

ραg(A) = ρ(A), where A ∈ A, ρ(A) =
∑d

i=1 ψiAψ
∗
i .

If, for example, F = O2, then, using (24) and para-
meterizing the matrix elements as

α = cos
θ

2
exp

(
i
ϕ1 + ϕ2

2

)
;

β = i sin
θ

2
exp

(
−i

ϕ2 − ϕ1

2

)
;

ᾱ = cos
θ

2
exp

(
−i

ϕ1 + ϕ2

2

)
;
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β̄ = −i sin
θ

2
exp

(
i
ϕ2 − ϕ1

2

)
, (25)

where ϕ1, ϕ2, θ are Euler angles (0 ≤ ϕ1 ≤ 2π, 0 ≤
ϕ2 ≤ 2π, 0 ≤ θ ≤ π), it can be easily shown that
OSU(2) = m(O2).

In the case of the conjugate endomorphism ρ̄, we
are dealing with the conjugate representation, and the
isometric operators ψ are replaced by the equalities
(12). Using similar calculations, one can obtain a
new algebra O

ŜU(3)
, which is invariant under the

conjugate representation of the group SU(3). This
allows for generalizing the algebra of observables in
the presence of a conjugate object.

2.5. Quantum Three-Level System

Following the scheme developed in [14] for the
case of a two-level system with isospin T = 1/2, let
us consider a three-level quantum system (qutrit)
whose state space is a three-dimensional Hilbert
space H formed by the linear span H = Lin{ψi}3i=1
of the multiplet ψ1, ψ2, ψ3 (see Subsection 1.1). This
multiplet serves as an orthonormal basis in the space
H, where the fundamental representation π of the
SU(3) group is realized.

The state space of two qutrits decomposes into
a direct sum of two coherent subspaces H⊗H =
H6 ⊕ H̄3, each of which is acted upon by irreducible
representations π6 and π̄3 of the SU(3) group, where
π ⊗ π = π6 ⊕ π̄3. The basis of the space H6 consists
of symmetric tensors formed from the basis elements
ψ1, ψ2, ψ3 satisfying relations (1), (2):

ψ11 = ψ1ψ1

ψ12 =
1√
2
(ψ1ψ2 + ψ2ψ1)

ψ13 =
1√
2
(ψ1ψ3 + ψ3ψ1)

ψ22 = ψ2ψ2

ψ23 =
1√
2
(ψ2ψ3 + ψ3ψ2)

ψ33 = ψ3ψ3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (*)

The basis of the space H̄3, in which the conjugate
representation π̄3 of the SU(3) group acts, is deter-
mined by the expression:

ψ̂23 =
1√
2
(ψ2ψ3 − ψ3ψ2)

ψ̂31 =
1√
2
(ψ3ψ1 − ψ1ψ3)

ψ̂12 =
1√
2
(ψ1ψ2 − ψ2ψ1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (**)

Thus, the 9-dimensional state space is divided
into two superselection sectors, one of which is the
conjugate sector. The projectors onto the basis states
of the H6 space are determined by the expressions:

Π11 = ψ11ψ
∗
11, Π12 = ψ12ψ

∗
12, Π13 = ψ13ψ

∗
13,

Π22 = ψ22ψ
∗
22, Π23 = ψ23ψ

∗
23,

Π33 = ψ33ψ
∗
33. (26)

Similarly, for the projectors onto the basis states of
the H̄3 space, we obtain the expressions:

Π̂23 = ψ̂23ψ̂
∗
23, Π̂31 = ψ̂31ψ̂

∗
31,

Π̂12 = ψ̂12ψ̂
∗
12. (27)

Without going into details, using the framework
developed in [14], it can be shown, for example, that
the state prepared by Alice in the symmetric state ψ11

in her coordinate system will be obtained by Bob after
the averaging procedure as a (mixed) state:

Π̃11 =
1

6
(Π11 +Π12

+Π13 +Π23 +Π22 +Π33). (28)

In obtaining this expression, we used the averaging
procedure over the SU(3) group with the Haar mea-
sure

dμ(g) =
4
√
3

π5

× sin 2α2 cosα4 sin
3α4 sin 2α6dα1dα2 × ...× dα8,

as described in the work [21], where

0 ≤ α1α3, α5, α7 ≤ π; 0 ≤ α1, α2, α4, α6 ≤ π/2;

0 ≤ α8 ≤ π/
√
3

are generalized Euler angles. It can be easily verified
that [Π̄11, G] = 0, which indicates that Π̃11 belongs to
the algebra of observables.

We plan to conduct a more detailed analysis of
the superselection structure of the algebra OSU(3) in
the presence of conjugate superselection sectors and
its role in quantum information transfer in our future
publication.

CONCLUSIONS

In this work, we have investigated the subcate-
gory of the category of endomorphisms with dimen-
sion d = 3 in the presence of a conjugate object,
which, due to the isomorphism between the group G
representation category and the abstract symmetric
tensor C∗-category, corresponds to the conjugate
representation. The presence of such conjugate ob-
jects associated with non-Abelian charges favours a
richer superselection structure in the theory, since it
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introduces conjugate sectors alongside the ordinary
ones. We expect that these conjugate non-Abelian
sectors will play a significant role in quantum in-
formation transfer as well as in the formulation of
quantum cryptographic protocols.
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