Аннотация к рабочей программе дисциплины Явление переноса в энергетике

Направление подготовки: 12.04.01 Приборостроение **Направленность (профиль):** Микропроцессорные средства и программное обеспечение измерений

Квалификация выпускника: магистр

Цель освоения дисциплины: а) приобретение знаний о фундаментальных законах сохранения массы и энергии; б) приобретение знаний о механизмах переноса импульса, массы и энергии; в) приобретение знаний и навыков по численным методам расчета полей скоростей, температур и концентраций.

Объем дисциплины: 3 зачетных единиц, 108 часов

Семестр:1

Краткое содержание основных разделов дисциплины:

№п/п раздела	Основные разделы дисциплины	Краткое содержание разделов дисциплины
	Фундаментальные законы молекулярного переноса, сохранения массы энергии и импульса.	Предмет и задачи курса явления переноса в энергетике. Основы массообмена.
2	Явления переноса и уравнение баланса	Основное балансовое соотношение. Аналогия процессов переноса субстанции. Законы молекулярного переноса. Дифференциальные уравнения переноса субстанции в движущейся жидкости. Абсорбция.
3	. Теория подобия	Гидродинамическое подобие. Тепловое подобие. Массообменное (диффузионное) подобие (подобие процессов массопередачи). Критериальные уравнения движения жидкости.
4	Гидродинамическая структура потока	Общие понятия о структуре потоков. Модель идеального вытеснения (МИВ). Модель идеального перемешивания (МИП). Ячеечная модель. Диффузионная модель
_	Основы процессов массообмена	Общие понятия. Фазовое равновесие. Механизм массообмена. Материальный баланс и рабочая диаграмма массообмена.
6	Основные закономерности процессов массообмена	Движущая сила массообмена. Основные размеры массообменных аппаратов. Уравнения массоотдачи и массопередачи.

Форма промежуточной аттестации: зачет