

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

УТВЕРЖДАЮ Директор ИЦТЭ

Э.И. Беляев

« 30 » мая 2023 г..

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДЭ.01.03.03 Нейросетевые технологии в ИСУ

Направление подготовки 09.03.01 Информатика и вычислительная техника

Квалификация

бакалавр

Программу разработал(и):

Tip of pulling pulling	\ /	
Наименование	Должность,	ФИО
кафедры	уч.степень, уч.звание	разработчика
ЦСМ	преподаватель	Овсеенко Галина
ЦСМ		Анатольевна
	доцент,	Абдуллин Адель
ЦСМ	кандидат физико-	Ильдусович
	математических наук	

Согласование	Наименование подразделени	Дата	№ протоко	Подпись
	Я		ла	
Одобрена	Кафедра ЦСМ	19.05.2023	5	Кандидат физико- математических наук, Доцент Смирнов Ю.Н.
Согласована	Учебно- методический совет ИЦТЭ	30.05.2023	7	Директор, к.т.н., доцент Беляев Э.И.
Одобрена	Ученый совет ИЦТЭ	30.05.2023	9	кандидат технических наук, доцент Беляев Э.И.

1. Цель, задачи и планируемые результаты обучения по дисциплине (Цель и задачи освоения дисциплины, соответствующие цели ОП)

Целью освоения дисциплины Нейросетевые технологии в ИСУ является Целью освоения дисциплины «Нейросетевые технологии в ИСУ» является формирование у студентов теоретических и практических знаний о современных нейросетевых технологиях, основах проектирования архитектуры нейронных сетей, методах глубокого обучения.

Задачами дисциплины являются: Задачами изучения дисциплины «Нейросетевые технологии в ИСУ» являются: -формирование базового понятийного аппарата принципов функционирования искусственных нейронных сетей и методов их обучения; -знакомство с современными нейросетевыми технологиями; - изучение средств разработки и проектирования искусственных нейронных сетей; -формирование умений и навыков решения практических задач с применением глубокого обучения.

Компетенции и индикаторы, формируемые у обучающихся:

Код и наименование компетенции	Код и наименование индикатора
	ПК-1.1 Выбирает актуальные цифровые
ПК-1 Способен предлагать	решения в управлении предприятием
актуальные цифровые решения в	ПК-1.2 Способен к внедрению и
управлении бизнес-процессами	сопровождению актуальных цифровых
	решений

2. Место дисциплины в структуре ОП

Предшествующие дисциплины (модули), практики, НИР, др. Последующие дисциплины (модули), практики, НИР, др.

3. Структура и содержание дисциплины

3.1. Структура дисциплины

Для очной формы обучения

Вид учебной работы	Всего	Всего	Семестр(ы)			
Bing y reenen pueersi	3E	часов	7			
ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ	6	216	216			
КОНТАКТНАЯ РАБОТА		89	89			
АУДИТОРНАЯ РАБОТА	1,89	68	68			
Лекции	0,94	34	34			
Практические (семинарские) занятия	0	0	0			
Лабораторные работы	0,94	34	34			
САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ	4,11	148	148			
Проработка учебного материала	3,11	112	112			
Курсовой проект	0	0	0			
Курсовая работа	0	0	0			
Подготовка к промежуточной аттестации	1	36	36			
Проможутонноя оттостоння:						
промежуючная аптестация.	Промежуточная аттестация:					

3.2. Содержание дисциплины, структурированное по разделам и видам занятий

Разделы			Распре,	делени	e	Формы и	Индексы индикаторов
дисциплины	OB		трудое	мкости		вид	формируемых
	часов	по вид	дам уче	ебной р	аботы	контроля	компетенций
	Всего	лекции	лаб. раб.	пр. зан.	сам. раб.		
Раздел 1	0	0				TK1	ПК-1.1, ПК-1.1-31, ПК-1.1-В1, ПК-1.1-У1
Раздел 2	3	3				TK2	ПК-1.2, ПК-1.2-31,
							ПК-1.2-В1, ПК-1.2-У1
Экзамен	36				36	OM1	
Итого за 7 семестр	3	3	0	0	0		
ИТОГО	3	3	0	0	0		

3.3. Содержание дисциплины Семестр 7

Раздел 1. Введение в нейронные сети

Тема 1.1 Основы нейронных сетей

История развития нейросетевых технологий. Задачи, решаемые с помощью нейросетевых технологий.

Основы нейронных сетей. Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Базовая архитектура нейронных сетей. Обучение с учителем. Основная терминология.

Тема 1.2 Полносвязные сети прямого распространения

Полносвязные сети прямого распространения. Преодоление проблемы XOR. Обучение нейронной сети с помощью алгоритма обратного распространения ошибки. Понятие обучающего конвейера (Pipeline).

Тема 1.3 Сверточные нейронные сети

Операция свертки. Взаимная корреляция. Рецептивное поле. Каскад сверток. Группировка (pooling).

Тема 1.4 Продвинутые методы обучения

Методы борьбы с переобучением. Аугментация данных. Батчнормализация. Регуляризация Тихонова. Lasso регуляризация. Dropout.

Раздел 2. Нейросетевые технологии

Тема 2.1 Технологии передачи обучения Transfer Learning

Технологии передачи знаний Transfer Learning / Domain adaptation. Дообучение сети, подстройка параметров Fine Tuning. Использоввание предобученных сетей. Современные сверточные архитектуры

Тема 2.2 Автоэнкодеры. Вариационные автоэнкодеры.

Автокодировщики. Архитектура энкодер-декодер. Обнаружение аномалий в данных с помощью автоэнкодера. Генеративные модели. Вариационные автоэнкодеры VAE.

Тема 2.3 Генеративные технологии

Современные генеративные архитектуры. Порождающие (генеративные) состязательные нейронные сети. Генератор. Дискриминатор.

Тема 2.4 Нейросетевые технологии в NLP

Обработка естественного языка с помощью нейронных сетей. Классификация текста. Рекуррентные нейронные сети. Архитектуры LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Unit). Механизм внимания. Архитектура Transformer.

3.4. Тематический план практических занятий

Данный вид работы не предусмотрен учебным планом.

3.5. Тематический план лабораторных работ

1. Технологии разработки и обучения нейронных сетей. Знакомство с облачными инструментами. 2. Решение задачи регрессии с помощью нейронной сети. 3. Предсказательная аналитика на основе нейронных сетей. 4 Технологии распознавания изображений на основе сверточных нейронных сетей. 5 Нейросетевые технологии в анализе биомедицинских данных. 6. Анализ временных рядов с помощью нейронных сетей. Выявление аномалий в данных. 7. Нейросетевые технологии в NLP. 8. Технологии инференса нейросетевых моделей.

3.6. Курсовой проект /курсовая работа

Данный вид работы не предусмотрен учебным планом.

4. Оценивание результатов обучения

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля и промежуточной аттестации, проводимых по балльнорейтинговой системе (БРС).

Шкала оценки результатов обучения по дисциплине:

		1 1	T 7	1		
Код	Код	Эонноии	Уровень со	формированнос	сти индикатора ко	мпетенции
Код	Код	Заплани-			Ниже	
комп	индикато	рованные	Высокий	Средний		Низкий
e-	100	1		1	среднего	
L-	pa	результаты	от 85 до 100	от 70 до 84	от 55 до 69	от 0 до 54
тенц	компетен	обучения по	01 00 A0 100			от о до г .
ии	шии	дисциплине		Шкала	оценивания	
FIFI	ции	дисциплинс	отлично	хорошо	удовлет-	неудов-

					ворительно	летвори-
				<u> </u> Зачтено		тельно не зачтено
		Знать:		34 110110		ne sa rreno
		- основы теории нейронных сетей, в том числе различные архитектуры нейронных сетей и алгоритмы их обучения; - основные методы и алгоритмы глубокого обучения.	глубоко и полно знает математическ ие структуры в основе построения нейронных сетей, знает алгоритм обратного распростране ния ошибки, современные архитектуры, метрики качества,	хорошо знает основные математическ ие структуры в построении нейронных сетей, знает алгоритм обратного распростране ния ошибки, некоторые современные архитектуры, основные метрики	знает базовые понятия нейронных сетей, знает алгоритм backprop, основные метрики	не знает базовых понятий, не знает как обучается нейронная сеть, не знает как оценить качество обучения модели
		Уметь:	качества,	мстрики		
ПК-1	ПК-1.1	анализироват ь модификации и новые средства программног о обеспечения для создания нейросистем и интеллектуал ьных систем	умеет анализироват ь поставленну ю задачу и предлагать решения на основе нейросетевых технологий; Умеет обосновывать свой выбор архитектуры и технологии обучения; Умеет интерпретиро вать выходы модели	умеет анализироват ь поставленну ю задачу и предлагать решения на основе нейросетевых технологий, обосновывать свой выбор архитектуры	умеет подбирать нейросетевую технологию для решения поставленной задачи.	не умеет подбирать адекватную нейросетеву ю технологию для решения поставленной задачи.
		владеть.	Владеет	Владеет	Владеет	
	ПК 1 2	- средствами создания и обучения нейронных сетей различных типов	продвинутым и средствами создания нейронных сетей различных архитектур. Владеет продвинутым и средствами обучения и тестирования сетей.	основными средствами создания нейронных сетей различных архитектур. Владеет стандартным и средствами обучения и тестирования сетей.	основными средствами создания нейронных сетей базовых архитектур. Владеет базовыми средствами обучения и тестирования сетей.	Не владеет средствами создания и обучения нейронных сетей
	ПК-1.2	Знать:				

			Г	
вычислитель ные средства и комплексы, применяемые при разработке и внедрению проектов нейросетей и интеллектуал ьных систем; -фреймворки глубокого обучения, такие как PyTorch и Tensorflow	Отлично знает язык Руthоп или С++, фреймворки глубокого обучения, такие как РуТогсh и Tensorflow, облачные платформы для работы с нейросетями	хорошо знает язык Руthon или С++, фреймворки глубокого обучения, такие как РуТогсh и Tensorflow, облачные платформы для работы с нейросетями	знает один из фреймворков глубокого обучения, такие как PyTorch и Tensorflow, облачные платформы для работы с нейросетями	не знает вычислитель ных средств, применяемых при разработке и внедрении проектов нейросетей и интеллектуал ьных систем;
Уметь:				<u> </u>
- создавать, проводить отладку программы под поставленну ю задачу с учетом последних теоретически х и практических достижений в области искусственно го интеллекта и нейросетевых технологий	Умеет создавать, проводить отладку программы с использовани ем современных интеллектуал ьных технологий, Умеет проводить внедрение ONNX (Open Neural Network Exchange)	Умеет создавать программы с использовани ем современных интеллектуал ьных технологий	Умеет сопровождатьциф ровые решенеия с использованием нейросетевых моделей	не умеет создавать программы с использовани ем нейросетевых моделей; не умеет внедрять нейросетевые модели
Владеть: - технологией внедрения и сопровожден ия актуальных цифровых решений на основе нейросетевых моделей в режиме инференса; -	Отлично владеет технологиям и сборки и запуска программ с использовани ем нейросетевых модулей, владеет технологией внедрения и развертывани я нейросетевых	владеет основными технологиям и сборки и запуска программ с использовани ем нейросетевых модулей, владеет технологией инференса.	владеет базовыми технологиями сборки и запуска программ с использованием нейросетевых модулей.	не владеет базовыми технологиям и развертывани я нейросетевых модулей

	моделей в		
	режиме		
	инференса,	a	
	пр., ONNX		
	RUNTIME		

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Учебно-методическое обеспечение

- 5.1.1. Основная литература
- 1) Остроух, Андрей Владимирович. Системы искусственного интеллекта: монография / А. В. Остроух, Н. Е. Суркова, 2019. 228 с. Текст: электронный. URL: https://e.lanbook.com/book/113401
- 2) Ясницкий, Леонид Нахимович. Интеллектуальные системы: учебник / Л. Н. Ясницкий, 2020. 224 с. Текст: электронный. URL: https://ibooks.ru/bookshelf/372666, ЭБС ibooks.ru
- 3) Ростовцев В. С. Искусственные нейронные сети : учебник / В. С. Ростовцев, 2023. 214 с. Текст : электронный. URL: https://e.lanbook.com/book/310184, ЭБС Лань
 - 5.1.2. Дополнительная литература
- 1) Терехов, Валерий Александрович. Нейросетевые системы управления : учебное пособие для вузов / В. А. Терехов, Д. В. Ефимов, И. Ю. Тюкин, 2002. 183 с. Текст : непосредственный.
- 2) Барский, Аркадий Бенционович. Нейронные сети: распознание, управление, принятие решений: производственное издание / А. Б. Барский, 2004. 176 с. Текст: непосредственный.
- 3) Баллод Б. А. Методы и алгоритмы принятия решений в экономике : учебное пособие / Б. А. Баллод, Н. Н. Елизарова, 2022. 271 с. Текст : электронный. URL: https://e.lanbook.com/book/213074, ЭБС Лань
- 4) Семенов А. Д. Моделирование систем управления: учебник / А. Д. Семенов, Н. К. Юрков, 2023. 326 с. Текст: электронный. URL: https://e.lanbook.com/book/288989, ЭБС Лань

5.2. Информационное обеспечение

5.2.1. Электронные и интернет-ресурсы

Наименование	Ссылка
Name	URI

5.2.2. Профессиональные базы данных / Информационно-справочные системы

Приводится перечень

5.2.3. Лицензионное и свободно распространяемое программное обеспечение дисциплины *Приводится перечень*

6. Материально-техническое обеспечение дисциплины

Наименование вида	Наименование учебной	
учебной работы	аудитории,	Перечень необходимого оборудования и
	специализтрованной	технических средств обучения
	лаборатории	
Лекции	Учебная аудитория для	Специализированная учебная мебель,
	проведения занятий	технические средства обучения, служащие для
	лекционного типа	представления учебной информации
		большой аудитории (мультимедийный
		проектор, компьютер (ноутбук), экран),
		демонстрационное оборудование, учебно-
		наглядные пособия
Практические	Учебная аудитория для	Специализированная учебная мебель,
занятия	проведения занятий	технические средства обучения
	семинарского типа,	(мультимедийный проектор, компьютер
	групповых и индивиду- альных консультаций,	(ноутбук), экран) и др.
	текущего контроля и	
	промежуточной аттестации	
Лабораторные	Учебная лаборатория	Специализированной лабораторное
работы	«»,	оборудование по профилю лаборатории:
_	Компьютерный класс с	Специализированная учебная мебель,
	выходом в Интернет	технические средства обучения
		(мультимедийный проектор, компьютер
		(ноутбук), экран), лицензионное
		программное обеспечение
	Компьютерный класс с	Специализированная учебная мебель на 30
	выходом в Интернет В-600а	посадочных мест, 30 компьютеров,
		технические средства обучения (мультиме-
		дийный проектор, компьютер (ноутбук),
		экран), видеокамеры, программное обеспечение
Самостоятельная	Компьютерный класс с	Специализированная учебная мебель на 30
работа	выходом в Интернет В-600а	посадочных мест, 30 компьютеров,
Puooru	,, === r ===============================	технические средства обучения (мультиме-
		дийный проектор, компьютер (ноутбук),
		экран), видеокамеры, программное
		обеспечение
		Специализированная мебель, компьютерная
	II	техника с возможностью выхода в Интернет и
	Читальный зал библиотеки	обеспечением доступа в ЭИОС, экран,
	оиолиотеки	мультимедийный проектор, программное
		обеспечение

Учебная аудитория для	Спец
выполнения курсового	
проекта (курсовой работы) (указывается при	изированная мебель, компьютерная техника
наличии КР/КП и такой	с возможностью выхода в Интернет и обеспечением доступа в ЭИОС,
аудитории)	обеспечением доступа в ЭИОС, программное обеспечение

7. Особенности организации образовательной деятельности для лиц с ограниченными возможностями здоровья и инвалидов

Лица с ограниченными возможностями здоровья (ОВЗ) и инвалиды имеют возможность беспрепятственно перемещаться из одного учебно-лабораторного корпуса в другой, подняться на все этажи учебно-лабораторных корпусов, заниматься в учебных и иных помещениях с учетом особенностей психофизического развития и состояния здоровья.

Для обучения лиц с OB3 и инвалидов, имеющих нарушения опорнодвигательного аппарата, обеспечены условия беспрепятственного доступа во все учебные помещения. Информация о специальных условиях, созданных для обучающихся с OB3 и инвалидов, размещена на сайте университета www/kgeu.ru. Имеется возможность оказания технической помощи ассистентом, а также услуг сурдопереводчиков и тифлосурдопереводчиков.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушенным слухом справочного, учебного материала по дисциплине обеспечиваются следующие условия:

- для лучшей ориентации в аудитории, применяются сигналы оповещения о начале и конце занятия (слово «звонок» пишется на доске);
- внимание слабослышащего обучающегося привлекается педагогом жестом (на плечо кладется рука, осуществляется нерезкое похлопывание);
- разговаривая с обучающимся, педагогический работник смотрит на него, говорит ясно, короткими предложениями, обеспечивая возможность чтения по губам.

Компенсация затруднений речевого и интеллектуального развития слабослышащих обучающихся проводится путем:

- использования схем, диаграмм, рисунков, компьютерных презентаций с гиперссылками, комментирующими отдельные компоненты изображения;
- регулярного применения упражнений на графическое выделение существенных признаков предметов и явлений;
- обеспечения возможности для обучающегося получить адресную консультацию по электронной почте по мере необходимости.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушениями зрения справочного, учебного, просветительского материала, предусмотренного образовательной программой по выбранному направлению подготовки, обеспечиваются следующие условия:

- ведется адаптация официального сайта в сети Интернет с учетом особых потребностей инвалидов по зрению, обеспечивается наличие крупношрифтовой справочной информации о расписании учебных занятий;
 - педагогический работник, его собеседник (при необходимости),

присутствующие на занятии, представляются обучающимся, при этом каждый раз называется тот, к кому педагогический работник обращается;

- действия, жесты, перемещения педагогического работника коротко и ясно комментируются;
- печатная информация предоставляется крупным шрифтом (от 18 пунктов), тотально озвучивается;
 - обеспечивается необходимый уровень освещенности помещений;
- предоставляется возможность использовать компьютеры во время занятий и право записи объяснений на диктофон (по желанию обучающихся).

Форма проведения текущей и промежуточной аттестации для обучающихся с ОВЗ и инвалидов определяется педагогическим работником в соответствии с учебным планом. При необходимости обучающемуся с ОВЗ, инвалиду с учетом их индивидуальных психофизических особенностей дается возможность пройти промежуточную аттестацию устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п., либо предоставляется дополнительное время для подготовки ответа.

8. Методические рекомендации для преподавателей по организации воспитательной работы с обучающимися.

Методическое обеспечение процесса воспитания обучающихся выступает одним из определяющих факторов высокого качества образования. Преподаватель вуза, демонстрируя высокий профессионализм, эрудицию, четкую гражданскую позицию, самодисциплину, творческий подход в решении профессиональных задач, в ходе образовательного процесса способствует формированию гармоничной личности.

При реализации дисциплины преподаватель может использовать следующие методы воспитательной работы:

- методы формирования сознания личности (беседа, диспут, внушение, инструктаж, контроль, объяснение, пример, самоконтроль, рассказ, совет, убеждение и др.);
- методы организации деятельности и формирования опыта поведения (задание, общественное мнение, педагогическое требование, поручение, приучение, создание воспитывающих ситуаций, тренинг, упражнение, и др.);
- методы мотивации деятельности и поведения (одобрение, поощрение социальной активности, порицание, создание ситуаций успеха, создание ситуаций для эмоционально-нравственных переживаний, соревнование и др.)

При реализации дисциплины преподаватель должен учитывать следующие направления воспитательной деятельности:

Гражданское и патриотическое воспитание:

- формирование у обучающихся целостного мировоззрения, российской идентичности, уважения к своей семье, обществу, государству, принятым в семье и обществе духовно-нравственным и социокультурным ценностям, к национальному, культурному и историческому наследию, формирование стремления к его сохранению и развитию;
 - формирование у обучающихся активной гражданской позиции, основанной

на традиционных культурных, духовных и нравственных ценностях российского общества, для повышения способности ответственно реализовывать свои конституционные права и обязанности;

- развитие правовой и политической культуры обучающихся, расширение конструктивного участия в принятии решений, затрагивающих их права и интересы, в том числе в различных формах самоорганизации, самоуправления, общественно-значимой деятельности;
- формирование мотивов, нравственных и смысловых установок личности, позволяющих противостоять экстремизму, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам, межэтнической и межконфессиональной нетерпимости, другим негативным социальным явлениям.

Духовно-нравственное воспитание:

- воспитание чувства достоинства, чести и честности, совестливости, уважения к родителям, учителям, людям старшего поколения;
- формирование принципов коллективизма и солидарности, духа милосердия и сострадания, привычки заботиться о людях, находящихся в трудной жизненной ситуации;
- формирование солидарности и чувства социальной ответственности по отношению к людям с ограниченными возможностями здоровья, преодоление психологических барьеров по отношению к людям с ограниченными возможностями;
- формирование эмоционально насыщенного и духовно возвышенного отношения к миру, способности и умения передавать другим свой эстетический опыт.

Культурно-просветительское воспитание:

- формирование эстетической картины мира;
- формирование уважения к культурным ценностям родного города, края, страны;
 - повышение познавательной активности обучающихся.

Научно-образовательное воспитание:

- формирование у обучающихся научного мировоззрения;
- формирование умения получать знания;
- формирование навыков анализа и синтеза информации, в том числе в профессиональной области.

Вносимые изменения и утверждения на новый учебный год

№ п/п	№ раздела внесения изменений	Дата внесения изменений	Содержание изменений	«Согласовано» Зав. каф. реализующей	«Согласовано» председатель УМК института (факультета), в состав которого входит выпускающая
1	2	3	4	5	6
1					
2					
3					

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по дисциплине

Б1.В.ДЭ.01.03.03 Нейросетевые технологии в ИСУ (Наименование дисциплины в соответствии с учебным планом)

Направление подготовки

<u>09.03.01 Информатика и вычислительная техника</u> (Код и наименование направления подготовки)

Квалификация

<u>бакалавр</u> (Бакалавр / Магистр)

Оценочные материалы по дисциплине <u>Нейросетевые технологии в ИСУ</u>, предназначенны для оценивания результатов обучения на соответствие индикаторам достижения компетенций.

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля (ТК) и промежуточной аттестации, проводимых по балльнорейтинговой системе (БРС).

1.Технологическая карта

Семестр 7

		Рейтин	Рейтинговые показатели			
Наименование раздела	Формы и вид контроля	Текущий контроль	Дополнительные баллы	Итого		
Раздел. "Введение в нейронные сети"	TK	20	0	0-20		
Раздел. " Нейросетевые технологии"	TK	35	0	0-35		
Промежуточная аттестация (зачет, экзамен, КП, КР)	OM			0-45		
Задание промежуточной аттестации				0-15		
В письменной форме по билетам				0-30		

Технологическая карта формируется для каждого вида промежуточной аттестации (зачета, экзамена, курсового проекта или работы)

2. Оценочные материалы текущего контроля и промежуточной аттестации

Шкала оценки результатов обучения по дисциплине:

			Уровень с	формированно	сти индикатора ко	мпетенции
Код	Код	Заплани-	Высокий	Средний	Ниже среднего	Низкий
комп	индикато	рованные	от 85 до 100	от 70 до 84	от 55 до 69	от 0 до 54
e-	pa	результаты		Шкала	оценивания	
тенц ии	компетен ции	обучения по дисциплине	отлично	хорошо	удовлет- ворительно	неудов- летвори- тельно
				не зачтено		
		Знать:				
		- основы	глубоко и	хорошо знает		не знает
		теории	полно знает	основные	знает базовые	базовых
		нейронных	математическ	математическ	понятия	понятий, не
ПК-1	ПК-1.1	1 сетей, в том ие структуры ие	ие структуры	нейронных сетей,	знает как	
	11111	числе	в основе	в построении	знает алгоритм	обучается
		различные	построения	нейронных	backprop,	нейронная
		архитектуры	нейронных	сетей, знает	основные	сеть, не знает
		нейронных	сетей, знает	алгоритм	метрики	как оценить
		сетей и	алгоритм	обратного		качество

T	1	Ι	1		T
	алгоритмы их	обратного	распростране		обучения
	обучения;	распростране	ния ошибки,		модели
	- основные	ния ошибки,	некоторые		
	методы и	современные	современные		
	алгоритмы	архитектуры,	архитектуры,		
	глубокого	метрики	основные		
	обучения.	качества,	метрики		
	Уметь:				
		умеет			
		анализироват			
		Ь			
	-	поставленну	умеет		
	анализироват	ю задачу и	анализироват		
	Ь	предлагать	ь		не умеет
	модификации	решения на	поставленну		подбирать
	и новые	основе	ю задачу и	умеет подбирать	адекватную
	средства	нейросетевых	предлагать	нейросетевую	нейросетеву
	программног	технологий;	решения на	технологию для	Ю
	0	Умеет	основе	решения	технологию
	обеспечения	обосновывать	нейросетевых	поставленной	для решения
	для создания	свой выбор	технологий,	задачи.	поставленной
	нейросистем	архитектуры	обосновывать		задачи.
	И	и технологии	свой выбор		, ,
	интеллектуал	обучения;	архитектуры		
	ьных систем	Умеет	1 31		
		интерпретиро			
		вать выходы			
	D	модели			
	Владеть:			D	
		Владеет	Владеет	Владеет	
		продвинутым	основными	основными	
		и средствами	средствами	средствами	
	- средствами	создания	создания	создания	TT
	создания и	нейронных	нейронных	нейронных сетей	Не владеет
	обучения	сетей	сетей	базовых	средствами
	нейронных	различных	различных	архитектур.	создания и
	сетей	архитектур.	архитектур. Владеет	Владеет базовыми	обучения нейронных
	различных	Владеет			неиронных сетей
	типов	продвинутым	стандартным	средствами обучения и	Сетеи
		и средствами обучения и	и средствами обучения и	тестирования	
		тестирования	тестирования	гестирования сетей.	
		сетей.	сетей.	coron.	
	Знать:	001011.	551611.		<u> </u>
	вычислитель	Отлично	хорошо знает		
		знает язык	язык Python		не знает
	ные средства и комплексы,	Python или	или С++ ,	знает один из	вычислитель
	применяемые	С++,	или С++, фреймворки	фреймворков	ных средств,
	применяемые	фреймворки	глубокого	глубокого	применяемых
	разработке и	глубокого	обучения,	обучения, такие	при
ПК-1.2	внедрению	обучения,	такие как	как PyTorch и	разработке и
	проектов	такие как	РуТоrch и	Tensorflow,	внедрении
	нейросетей и	PyTorch и	Tensorflow,	облачные	проектов
	интеллектуал	Tensorflow,	облачные	платформы для	нейросетей и
	ьных	облачные	платформы	работы с	интеллектуал
	систем;	платформы	для работы с	нейросетями	ьных
		. HAIGHWODINIDI	THE CHANGE OF COMME		
	-фреймворки	для работы с	нейросетями		систем;

глубокого обучения, такие как РуТогсh и Tensorflow	нейросетями			
Уметь: - создавать, проводить отладку программы под поставленну ю задачу с учетом последних теоретически х и практических достижений в области искусственно го интеллекта и нейросетевых технологий	Умеет создавать, проводить отладку программы с использовани ем современных интеллектуал ьных технологий, Умеет проводить внедрение ONNX (Open Neural Network Exchange)	Умеет создавать программы с использовани ем современных интеллектуал ьных технологий	Умеет сопровождатьциф ровые решенеия с использованием нейросетевых моделей	не умеет создавать программы с использовани ем нейросетевых моделей; не умеет внедрять нейросетевые модели
Владеть:				
технологией внедрения и сопровожден ия актуальных цифровых решений на основе нейросетевых моделей в режиме инференса;	Отлично владеет технологиям и сборки и запуска программ с использовани ем нейросетевых модулей, владеет технологией внедрения и развертывани я нейросетевых моделей в режиме инференса,на пр., ONNX RUNTIME	владеет основными технологиям и сборки и запуска программ с использовани ем нейросетевых модулей, владеет технологией инференса.	владеет базовыми технологиями сборки и запуска программ с использованием нейросетевых модулей.	не владеет базовыми технологиям и развертывани я нейросетевых модулей

Оценка **«отлично»** выставляется за выполнение полное выполнение лабораторных работ в семестре; глубокое понимание принципов построения, методов и технологий обучения нейронных сетей, понимание метрик обучения, полные и содержательные ответы на вопросы билета (теоретический и практический вопросы)

Оценка «хорошо» выставляется за выполнение выполнение лабораторных работ в семестре; понимание основных принципов построения и методов обучения нейронных понимание обучения, сетей, метрик содержательные ответы на вопросы билета (теоретический и практический вопросы)

Оценка **«удовлетворительно»** выставляется за выполнение выполнение лабораторных работ в семестре; базовое понимание основных принципов построения и методов обучения нейронных сетей, знание метрик обучения, ответы на вопросы билета (теоретический и практический вопросы)

Оценка «**неудовлетворительно**» выставляется за слабое и неполное выполнение лабораторных работ в семестре; незнание и непонимание базовых принципов построения нейронных сетей; неполное и неясное выполнение теоретического вопроса билета; неспособность объяснить программный код по практической части билета.

3. Перечень оценочных средств

Краткая характеристика оценочных средств, используемых при текущем контроле успеваемости и промежуточной аттестации обучающегося по дисциплине:

4. Перечень контрольных заданий или иные материалы, необходимые для оценки знаний, умений и навыков, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Для текущего контроля ТК1:

Проверяемая компетенция: ПК-1.1: Выбирает актуальные цифровые решения в управлении предприятием

Тест

1001		ı	
Вопрос	Варианты ответа	ответ	
Нейросетевыми	комплекс информационных технологий, основанных		
технологиями называют	на применении компьютерных сетей		
	комплекс информационных технологий,		
	основанных на применении искусственных		
	нейронных сетей		
	информационные системы поиска		
	информационные технологии управления		
Алгоритм обучения	достигнуто заданное значение средней (или		
искусственной нейронной	минимальной) ошибки		
сети заканчивается, когда	сеть исчерпала возможности обучения (ошибка		
	перестала уменьшаться от эпохи к эпохе)		
	пройдено определенное количество эпох		
	любой ответ из перечисленных		
Какие функции выполняет	Вычисляет производную для алгоритма обратного		
программная реализация	распространения ошибки.		
входного слоя	Передает входной вектор сигналов на первый		
многослойного	скрытый слой.		
персептрона?	Удаляет "шум" из сигнала.		
	Транслирует сигнал на выходной слой многослойного		
	персептрона.		
Нейрон ј получил на вход	-1.8485		
сигнал от четырех других	0,5		
нейронов уровни	-0,4621		
возбуждения, значения	0,2449		
которых равны 10, -20, 5, 4 и			
соответствующие веса			
связей равны 0.8, 0.5, 0.7 и			
-0.5 соответственно.			
Вычислите сигнал на выходе			
ј-го нейрона в случае, если			
функция активации			
нейронов есть			
гиперболический тангенс.			
Выберите правильный ответ:			
Программно реализована	0		
нейронная сеть с одним	0,7311		
скрытым слоем и	3		
		·	

активационной функцией	2,1932	
сигмоида. У сети 1 вход, 3		
нейрона в скрытом слое и		
один выход. Что будет на		
выходе сети в случае, если		
на входе 1, все веса раны 1 и		
смещение 0.		
1		
X V		
$\longrightarrow (1) \longrightarrow (2) \longrightarrow (1) \longrightarrow$		
13)		
Что представляет собой	процедуру подстройки сигналов нейронов	
алгоритм «обучения	процедуру подстройки весовых значений	
искусственной нейронной	процедуру вычисления пороговых значений для	
сети»?	функций активации	
Программная реализация	аппроксимации функций	
однослойного персептрона	распознавания образов	
позволяет решать задачи	классификации	
Какая архитектура	Многослойный персептрон	
искусственной нейронной	Рекуррентные нейронные сети	
сети больше подходит для	Сверточные нейронные сети	
разработки алгоритмов		
анализа естественных		
языков (текстов).		
Для функции активации	-1	
гиперболический тангенс	0	
•	1	
$th(x)=rac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ вычислите,	Предел не существует	
чему равен $\lim_{x \to -\infty} th(x)$?	Предел не существует	
Для разработки алгоритмов	ResNet	
и программных средств для	YOLO	
детекции и трекинга в	SSD	
системах видеонаблюдения,	GAN	
используются нейронные		
сети	0.171	
Какой фреймворк глубокого	CNTK	
обучения имеет интерфейс	Tensorflow	
для разработки	PyTorch	
программных средств на	Все перечисленные	
языке программирования		
Python для обучения и		
запуска ИНС?		
Входное изображение имеет	torch.Tensor размером 6 на 14 на 14	
размер 32 на 32. Какого	torch.Tensor размером 28 на 6 на 6	
размера получится результат	torch.Tensor размером 6 на 28 на 28 torch.Tensor размером 6 на 5 на 5	
свёртки в PyTorch 5 на 5 без		

padding, co stride=(1,1), если		
на выходе должно быть 6		
каналов?		
Сколько параметров в	3 параметра: столько же, сколько и каналов	
свертке размером 3х3,	9 всего: мы накладываем одну и ту же свертку на	
которая применяется к	каждый из трех каналов	
трехканальному	9 уникальных всего 27, но для всех каналов	
изображению? Не считайте	параметры одинаковые	
слой активации, не	27 параметров: 3х3 для каждого из трех каналов	
учитывайте <i>bias</i> .		
Для какой архитектуры	VGG	
сверточной нейронной сети	AlexNet	
характерно обходные	ResNet	
соединения	GoogleNet	
(skipconnections),		
пробрасывающие градиент		
ошибки в обход свёртки		
Укажите ошибку при работе	optimizer = torch.optim.Adam(net.parameters(), lr=0.01)	
с оптимизатором в PyTorch	optimizer.step()	
при разработке программы	optimizer.zero_grad()	
обучения нейронной сети.	optimizer.backward()	

Вопросы

- 1. Функция потерь и оптимизация параметров нейронной сети. Вывод ФП из метода максимального правдоподобия.
- 2. Обучение нейронной сети с помощью алгоритма обратного распространения ошибки. Понятие паралича сети и причины его возникновения.
- 3. Оценка качества нейросетевых моделей. Основные метрики.
- 4. Свёрточные нейронные сети. Операция свертки, каскад свёрток.
- 5. Архитектуры нейронных сетей для мультиклассовых моделей. Функция Softmax.
- 6. Архитектуры нейронных сетей для моделей бинарной классификации
- 7. Многослойный перцептрон. Представление булевых функций. Преодоление ограничения линейной разделимости и решение проблемы исключающего «или». Теорема Колмогорова.
- 8. Операция деконволюции. Transposed convolution layer.
- 9. Алгоритм обратного распространения ошибки. Достоинства и недостатки алгоритма. Понятие паралича сети и причины его возникновения.
- 10. Базовая архитектура нейронных сетей. Принципы построения. Основные функции активации.

Для текущего контроля ТК2:

Проверяемая компетенция: ПК-1.2: Способен к внедрению и сопровождению актуальных цифровых решений

Вопрос	Варианты ответа	ответ
В каких областях	оценка вероятности банкротства;	
экономики применяются	распознавание образов (текста, подписи);	
алгоритмы на основе	задачи классификации и сегментации экономических	
искусственных нейронных	объектов	
сетей?	все перечисленные	
Программно реализован	0,9951	
нейрон с функцией	1	
активации типа	-1	
гиперболический тангенс с	0,9981	
тремя входами и нейрон	0,7701	
смещения. Входы все		
равны 1 и все веса также		
равны 1, а смещение 0,5.		
Чему будет равен выход		
нейрона?		
В программе нейронной	0,25	
сети нейрон ј получил на	0,6225	
вход сигнал от четырех	0,3775	
других нейронов уровни	-1,5415	
возбуждения, значения	-,	
которых равны 10, -20, 5, 4		
и соответствующие веса		
связей равны 0.8, 0.5, 0.7 и		
-0.5 соответственно.		
Вычислите сигнал на		
выходе ј-го нейрона в		
случае, если функция		
активации нейронов есть		
логистическая сигмоида.		
Выберите правильный		
ответ:		
В программной реализации	если найдется такой нейрон ј, что	
однослойного персептрона	$\sum_{i=1}^{n} a_i w_i^j < \Theta$	
на вход подается вектор		
(x_1x_n) . В каком случае	если для каждого нейрона ј будем иметь	
выходом будет нулевой	$\sum_{i=1}^{n} a_i w_i^j < 1$	
вектор?	1=1	
	если для каждого нейрона ј будем иметь	
	$\sum_{i=1}^{n} a_i w_i^j < \Theta$	
	если найдется такой нейрон ј, что	
	$\sum_{i=1}^{n} a_i w_i^j = \boldsymbol{\Theta}$	
Найдите производную этой	$1-th^2(x)$	
функции активации	$\frac{1-th(x)}{1+th^2(x)}$	
	th(x)-1	
$th(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$ и выразите	$th^2(x)$	
результат через функцию	m (A)	
th(x)		
	I .	

Какая архитектура	Полносвязная нейронная сеть (многослойный	
искусственной нейронной	персептрон)	
сети больше всего	Сверточная (конволюционная) нейронная сеть	
подходит для разработки	Рекуррентная нейронная сеть	
алгоритмов и программных		
средств распознавания		
образов и анализа		
изображений?		
Пусть в программе	MSE	
автоматического	MAE	
распознавания рукописных	CE (Cross Entropy)	
цифр от 0 до 9	BCE (Binary Cross Entropy)	
используется CNN с		
активацией softmax. Какую		
функцию потерь вы		
выберете?		
Аугментация данных	увеличения объема обучающей выборки	
применяется для	увеличения скорости обучения	
_	нормализации	
	борьбы с переобучением	
С помощью какого	1	
минимального числа	3	
нейронов в скрытом слое	4	
многослойного	5	
персептрона решается		
проблема XOR ?		
Для разработки алгоритмов	GAN	
и программных средств для	ResNet	
решения задачи	LSTM	
классификации в системах	VGG	
компьютерного зрения	700	
используются нейронные		
сети		
При построении	Если обучаться на полном датасете и на нем же делать	
алгоритмов обучения	валидацию, то можно не заметить переобучения	
нейронной сети обычно	Validation нужна, чтобы подобрать гиперпараметры	
датасет делят на 2	сети	
части train и test или на 3	Test нужен для финальной оценки качества работы	
части: train, validation,	сети	
test. Для чего нужно такое	Все вышеперечисленное	
деление?	Dec Brimenepe inchennue	
Какая программная	Tensorflow	
библиотека не применяется	Torch	
для глубокого обучения?	NLTK	
An injustration of telling	CNTK	
При написании программ в	d[0] + c[2]	
При написании программ в		
РуТогсh какая операция с	c % d	
тензорами c, d	c.shape	
c = torch.ones([5,4])	d + c	
d = torch.Tensor([[1,2,3,4],		
[5,6,7,8],		
[9,10,11,12],		

[13,14,15,16], [17,18,19,20]]) позволяет получить следующий вывод? tensor([[0., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.])		
Пусть матрица признаков	[[-4, 3],	
равна	[- - , 5], [- - 9,5]]	
[[4, 2, -1],	[[3, -4],	
[-6, 0, 5],	[-9,5]]	
[3, 2, 2]],	[[-9, 5],	
а ядро свертки –	[3,-4]]	
[[0,1,2],	[[-4, 3,1],	
[1, -1, 0],	[1, 0, -2]	
[1, 0, -2]]		
Каков будет результат		
применения свертки со		
stride=2, padding=1?		
В программе на PyTorch	13	
исходный torch.tensor был	169	
размером 13х13х384.	384	
Сколько фильтров должно	64896	
быть в свёртке, которая		
выдаёт torch.tensor		
размером 13х13х384?		

Вопросы

- 1. Регуляризация нейронной сети: "weight decay". Регуляризация Тихонова, Lasso регуляризация
- 2. Регуляризация и прореживание нейронной сети. Прямой и обратный Dropout.
- 3. Методы глубокого обучения. Нормализация данных. Батчнормализация.
- 4. Технология передачи обучения Transfer Learning. Использование предобученных сетей.
- 5. Автоэнкодеры. Особенности архитектуры и обучения энкодера и декодера.
- 6. Рекуррентные нейронные сети. Архитектура GRU (Gated recurrent unit).
- 7. Рекуррентные нейронные сети. Архитектура LSTM (Long Short-Term Memory).
- 8. Генеративно-состязательные нейросети (GAN) и style transfer.
- 9. Фреймворк глубокого обучения Tensorflow
- 10. Фреймворк глубокого обучения Pytorch

Для промежуточной аттестации:

Базовые вопросы к экзамену

- 1. Математическая модель биологического нейрона. Дендриты, аксоны, синапсы.
- 2. Классификация нейронных сетей, области применения и решаемые задачи.
- 3. Базовая архитектура нейронных сетей. Принципы построения. Основные функции активации.
- 4. Перцептрон Розенблатта и правило Хебба. Теорема о сходимости алгоритма обучения перцептрона для линейно-разделимых множеств. Проблема XOR.
- 5. Многослойный перцептрон. Представление булевых функций. Преодоление ограничения линейной разделимости и решение проблемы исключающего «или». Теорема Колмогорова.
- 6. Обучение нейронной сети с помощью алгоритма обратного распространения ошибки. Понятие паралича сети и причины его возникновения.
- 7. Функция потерь и оптимизация параметров нейронной сети. Вывод функции потерь из метода максимального правдоподобия.
- 8. Проблема овражности поверхности функционала ошибки и её частичное преодоление с помощью введения момента (Nesterov momentum).
- 9. Обучение с помощью backpropagation на основе алгоритма RMSProp.
- 10. Обучение с помощью backpropagation на основе алгоритма Adaptive moment estimation.
- 11. Проблема исчезающего и взрывающегося градиента. Понятие «умирающий» ReLU.
- 12. Оценка качества обучения. Основные метрики задач классификации.
- 13. Постановка и решение задачи регрессии с помощью нейронной сети.
- 14. Постановка и решение задачи бинарной классификации с помощью нейронных сетей.
- 15. Архитектуры нейронных сетей для многоклассовых моделей. Вероятностная мера принадлежности к классу. Функция Softmax.
- 16. Свёрточные нейронные сети. Операция свертки (1D, 2D). Ядро свертки. Каскад свёрток.
- 17. Базовые принципы построения сверточных нейронных сетей.
- 18. Архитектура Inception (inception блок). Training head.
- 19. Архитектура ResNet (residual блок). Skip-connection.
- 20. Переобучение и методы борьбы с ним. Аугментация. Early stopping
- 21. Регуляризация нейронной сети: "weight decay". Регуляризация Тихонова, Lasso регуляризация.
- 22. Регуляризация и прореживание нейронной сети. Dropout.
- 23. Нормализация данных batch-нормализация (batch_norm, layer_norm). Вычисление статистик при обучении и валидации (train/eval).
- 24. Технология "передачи знаний" Transfer Learning (fine tuning, feature extraction)
- 25. Семантическая сегментация с помощью глубокого обучения. Полносверточные сети (FCN). Операция деконволюции. Transposed convolution layer.
- 26. Архитектура SegNet, Unet. Функции потерь на основе коэффициента Дайса и focal loss.
- 27. Методы масштабирования для операции upsampling и downsampling. Dilated convolution.
- 28. Генеративные модели и автоэнкодеры.
- 29. Вариационные автоэнкодеры (VAE). Дивергенция Кульбака-Лейблера.
- 30. Генеративно-состязательные нейронные сети (GAN) и нейронный стиль передачи обучения (на примере style transfer).
- 31. Рекуррентные нейронные сети и специфика их обучения.

- 32. Глубокое обучение в NLP. Классификация текстов с помощью CNN и RNN.
- 33. Архитектуры LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Unit).
- 34. Механизм внимания (Attention).
- 35. Фреймворк глубокого обучения PyTorch. Автоматическое дифференцирование. Принципы построения нейронных сетей в PyTorch: функциональный и объектный подход.
- 36. Фреймворк глубокого обучения Tensorflow. Вычислительный граф. Построение нейронной сети и ее обучение. Tensorboard.
- 37. Инференс нейросетевых моделей. ONNX.

Типовые задачи:

- 1. Реализовать и обучить сеть для предсказания лояльности клиентов сотового оператора (датасет у преподавателя)
- 2. Реализовать сверточную сеть, обучить сеть и провести классификацию torchvision.datasets.FakeData. Составить confusion matrix. Построить графики ассигасу и loss на валидации. Провести анализ. Уметь объяснить свой код.
- 3. Реализовать ResNet18 для CIFAR10 (torchvision.datasets).
 - Из библиотеки torchvision (ставится вместе с pytorch), можно импортировать ResNet18 командой from torchvision.models import resnet18
 - Добавьте L2-регуляризацию. В PyTorch она активируется с помощью параметра weight_decay в оптимизаторе. Значение обычно выбирают из [1e-3, 1e-4, 1e-5]. Пример:
 - optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
 - Составить confusion-matrix. Графики accuracy и loss на валидации. Провести анализ обучения. Уметь объяснить свой код.
- 4. С помощью фреймворка PyTorch для решения задачи классификации реализовать нейронную сеть архитектуры VGG. Провести обучение на датасете EMNIST (torchvision.datasets) в Google Collaboratory.
 - Построить графики ассuracy и loss на валидации.
 - Провести анализ влияния гиперпараметров (на выбор 1 параметр) на обучение построенной ИНС.
- 5. С помощью фреймворка PyTorch для решения задачи классификации реализовать нейронную сеть архитектуры MobileNet. Провести обучение на датасете FashionMnist (torchvision.datasets) в Google Collaboratory. Построить графики ассигасу и loss на валидации. Провести анализ влияния гиперпараметров (на выбор 1 параметр) на
 - Провести анализ влияния гиперпараметров (на выбор 1 параметр) на обучение построенной ИНС.
- 6. Реализовать сверточную сеть, обучить сеть и провести классификацию torchvision.datasets.FakeData. Построить графики accuracy и loss на валидации.

- Провести анализ влияния гиперпараметров (на выбор 1 параметр) на обучение построенной ИНС.
- 7. С помощью фреймворка PyTorch реализовать нейронную сеть архитектуры DenseNet. Решить задачу классификации для FashionMNIST из библиотеки torchvision.datasets. Составить confusionmatrix. Графики ассигасу и loss на валидации. Провести анализ обучения. Уметь объяснить свой код.
- 8. Провести бинарную классификацию в ML-задаче (датасет у преподавателя). Разделить выборку на обучающую и контрольную. Обучить сеть. Оценить качество обучения.
- 9. Решение задачи регрессии с помощью нейронной сети (датасет у преподавателя).
- 10. Обучить нейронную сеть для задачи предсказания заболевания. Построить графики ассигасу и loss на валидации. Провести анализ. Уметь объяснить свой код.