

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

АКТУАЛИЗИРОВАНО

решением ученого совета ИЭЭ протокол №7 от 16.04.2024

УТВЕРЖДА]	Ю	
Директор		
Института	электроэнергетики	И
электроники		
	Р.В.Ахметова	
«30» мая 202	3 г.	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.14 Химия				
Направление подготовки	20.03.01 Техносферная безопасность			
Квалификация	_Бакалавр_			

Программу разработал(и):

Наименование	Должность, уч.степень,	ФИО
кафедры	уч.звание	разработчика
XB	Доцент, к.х.н.	Гибадуллина Х.В.

Согласование	Наименование подразделения	Дата	№ протокола	Подпись
Одобрена	XB	10.05.2023	10	 Зав.кафедрой, д.х.н., проф. Чичиров А.А.
Согласована	еи	18.05.2023	7	 Зав.кафедрой, д.т.н., проф. Николаева Л.А.
Согласована	Учебно- методический совет ИЭЭ	30.05.2023	8	
Одобрена	Ученый совет ИЭЭ	30.05.2023	9	

1. Цель, задачи и планируемые результаты обучения по дисциплине

Целью освоения дисциплины «Химия» является изучение химических систем и фундаментальных законов химии с позиций современной науки, формирование целостного естественнонаучного мировоззрения.

Задачами дисциплины являются: обучение теоретическим основам знаний о составе химических веществ, а также о явлениях, которыми сопровождаются превращения одних веществ в другие при протекании химических реакций.

Компетенции и индикаторы, формируемые у обучающихся:

Код и наименование компетенции	Код и наименование индикатора
ОПК-1 — Способен учитывать современные тенденции развития техники и технологий в области техносферной безопасности, измерительной и вычислительной техники, информационных технологий при решении типовых задач в области профессиональной деятельности, связанной с защитой окружающей среды и обеспечением безопасности человека	ОПК-1.3 – Демонстрирует знание основных законов химии и понимание химических процессов

2. Место дисциплины в структуре ОП

Предшествующие дисциплины (модули), практики, НИР, др. Последующие дисциплины (модули), практики, НИР, др. Материаловедение и технология конструкционных материалов

3. Структура и содержание дисциплины

3.1. Структура дисциплины

Для очной формы обучения

Вид учебной работы	Всего	Всего	Семестр
	3 E	часов	1
ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ	3	108	108
КОНТАКТНАЯ РАБОТА*	1	61	61
АУДИТОРНАЯ РАБОТА	1,38	50	50
Лекции	0,44	16	16
Практические (семинарские) занятия	0,5	18	18
Лабораторные работы	0,44	16	16

САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ	1,62	58	58
Проработка учебного материала	0,62	22	22
Курсовой проект	-	-	-
Курсовая работа	-	-	-
Подготовка к промежуточной аттестации	1	36	36
Промежуточная аттестация:			Э
			-

Для заочной формы обучения

Вид учебной работы	Всего	Всего	Семестр
·	3E	часов	1
ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ	3	108	108
КОНТАКТНАЯ РАБОТА*	-	32	32
АУДИТОРНАЯ РАБОТА	0,39	14	14
Лекции	0,17	6	6
Практические (семинарские) занятия	0,11	4	4
Лабораторные работы	0,11	4	4
САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ	2,61	94	94
Проработка учебного материала	2,36	85	85
Курсовой проект	-	-	_
Курсовая работа	-	-	-
Подготовка к промежуточной аттестации	0,25	9	9
Промежуточная аттестация:			Э
			-

3.2. Содержание дисциплины, структурированное по разделам и видам занятий

Разделы дисциплины	Всег	Распределение трудоемкости по видам учебной работы		Формы и вид	Индексы индикаторов формируемых		
	часо			•		контроля	компетенций
	В	лекц	лаб.	пр.	сам.		
		ии	раб.	зан.	раб.		
Раздел 1.	17	4	4	4	5	TK1	ОПК-1.3.3
Раздел 2.	28	6	8	8	10	TK2	ОПК-1.3.У
Раздел 3.	27	6	6	6	7	TK3	ОПК-1.3.В
Экзамен	36				36	OM	ОПК-1.3.У,В

ИТОГО	108	16	16	18	58	

3.3. Содержание дисциплины

Раздел 1. Строение вещества. Свойства основных видов химических веществ и классов химических объектов

Тема 1.1. Основные законы химии. Строение вещества

Предмет химии. Основы строения вещества: электронное строение атома и систематика химических элементов. Квантово-механическая модель атома. Квантовые числа и атомные орбитали. Правила построения электронной структуры атомов. Периодическая система Д.И. Менделеева. Периодичность свойств элементов. Периодический закон и его связь со строением атома.

Tema 1.2. Свойства основных видов химических веществ и классов химических объектов

Металлы, неметаллы и элементы с промежуточными свойствами, классификация по химической природе. Классификация химических элементов по электронной структуре. Обзор свойств s-, p-, d-, f- семейств. Сплавы металлов.

- Тема 1.3. Химическая связь: виды и характеристики. Методы валентных связей и метод молекулярных орбиталей (МО ЛКАО). Межмолекулярная связь. Водородная связь. Донорно-акцепторное взаимодействие молекул. Металлическая связь. Химические связи в твердых телах: ковалентные, ионные и металлические. Понятия о зонной теории кристаллов.
- Тема 1.4. Комплексные соединения. Координационная теория Вернера. Классификация и номенклатура комплексных соединений. Поведение комплексных соединений в растворах. Комплексоны.

Раздел 2. Общие закономерности химических процессов. Растворы и другие дисперсные системы

- 2.1. Элементы химической термодинамики. Термодинамические функции: внутренняя энергия, энтальпия, энтропия, энергия Гиббса. Теплота и работа. Первый закон термодинамики. Закон Гесса. Второй закон термодинамики. Условие самопроизвольного протекания химических реакций.
- 2.2. Химическое равновесие. Константа химического равновесия. Закон действующих масс. Принцип Ле Шателье. Фазовое равновесие. Фазовые диаграммы. Поверхностные эффекты на границе раздела фаз. Адсорбционное равновесие.
- 2.3. Химическая кинетика. Скорость химических процессов. Кинетическое уравнение. Порядок реакции. Скорость реакции и методы ее регулирования. Уравнение Аррениуса. Энергия активации. Механизм и молекулярность химических реакций. Катализаторы и каталитические системы. Механизмы гомогенного и гетерогенного катализа.

- 2.4. Общие представления о дисперсных системах. Общие свойства растворов и понятие идеального раствора. Основы термодинамики растворения. Растворимость.
- 2.5. Сильные и слабые электролиты. Степени и константы диссоциации слабых электролитов. Ионное произведение воды. Водородный показатель среды. Теории кислот и оснований Аррениуса, Бренстеда. Коллоидные растворы, частицы и мицеллы. Устойчивость и коагуляция коллоидных систем.
- Раздел 3. Окислительно-восстановительные реакции и электрохимические процессы. Коррозия металлов
- 3.1. Электрохимические процессы. Двойной электрический слой. Стандартный водородный электрод. Электродные потенциалы и электродвижущие силы. Потенциалы металлических, газовых и окислительновосстановительных электродов. Концентрационная и электрохимическая поляризация.
- 3.2. Гальванические элементы. Анодная обработка металлов. Первичные и топливные элементы. Аккумуляторы.
- 3.3. Электролиз расплавов и растворов электролитов. Законы Фарадея. Выход по току.
- 3.4. Коррозия и защита металлов и сплавов. Основные виды коррозии. Классификация коррозионных процессов. Химическая и электрохимическая коррозия металлов. Коррозия с выделением водорода. Коррозия с поглощением кислорода. Основные методы защиты от коррозии. Протекторы, ингибиторы коррозии.

3.4. Тематический план практических занятий

- 1. Закон эквивалентов и расчеты на его основе
- 2. Строение атома
- 3. Законы термодинамики и термохимические расчеты
- 4. Химическая кинетика и химическое равновесие
- 5. Способы выражения состава растворов. Водородный показатель
- 6. Произведение растворимости. Условие растворения и выпадения осадков
- 7.Окислительно-восстановительные реакции, окислительно-восстановительные потенциалы
 - 8. Электрохимические процессы. Законы Фарадея. Электролиз
 - 9. Гальванические элементы. Коррозия и защита металлов

3.5. Тематический план лабораторных работ

- 1. Правила по технике безопасности в химической лаборатории
- 2. Основные понятия и законы стехиометрии. Определение молярной массы эквивалента металла
 - 3. Определение тепловых эффектов химических реакций

- 4. Химическая кинетика. Влияние концентрации на скорость химической реакции
- 5. Способы выражения состава растворов. Приготовление растворов заданной концентрации из более концентрированного раствора
- 6. Кислотно-основное и комплексонометрическое титрование. Определение общей жесткости воды
 - 7. Измерение ЭДС гальванического элемента
 - 8. Коррозия металлов

3.6. Курсовой проект /курсовая работа

Данный вид работы не предусмотрен учебным планом.

4. Оценивание результатов обучения

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля и промежуточной аттестации, проводимых по балльно-рейтинговой системе (БРС).

Шкала оценки результатов обучения по дисциплине:

	нказа оценки результатов обутения по днециилите.						
	Код компетенци и Код индикатора компетенци и и Код рованные результаты обучения по дисциплине		Уровень сформированности				
			V	индикатора	компетенции	[
		рованные результаты	Высокий	Средний	Ниже среднего	Низкий	
Кол			от 85 до	от 70 до	от 55 до	от 0 до	
			100	84	69	54	
тенции			* **				
		дисциплине			удовлет-	неудов-	
			отлично	хорошо	ворительн	летвори-	
					O	тельно	
				зачтено		не зачтено	
ОПК-1	ОПК-1.3	знать:	_		_		

		l n	l n	La
	Знает	Знает	Знает	Знает
	фундамент	фундамент	фундамент	фундамен
	альные	альные	альные	тальные
	законы	законы	законы	законы
	химии;	химии;	химии;	химии;
	современн	современн	современн	современн
Знает	ые	ые	ые	ые
фундаментальн	и киткноп ш	понятия и	понятия и	понятия и
е законы химин	и; модели	модели	модели	модели
современные	химически	химически	химически	химическ
и киткноп	х систем;	х систем,	х систем,	их систем,
модели	реакционн	при ответе	допускает	допускает
химических	ую	может	множество	грубые
систем;	способнос	допустить	мелких	ошибки
реакционную	ТЬ	несколько	ошибок	
способность	химически	не грубых		
химических	X	ошибок		
соединений	соединени			
разных классов	в й разных			
неорганически	х классов			
и органических	неорганич			
веществ	еских и			
	органическ			
	их			
	веществ,			
	не			
	допускает			
	ошибок			
уметь:				

	T	Помете	Пометен	Dwares	Пат
		Демонстри	Демонстри	В целом	При
		рует	рует	демонстри	решении
		умение	умение	рует	типовых
		использова	использова	умение	задач
		ТЬ	ТЬ	использова	демонстри
		основные	основные	ТЬ	рует
		химически	химически	основные	умение
		е законы,	е законы,	химически	использов
	использовать	термодина	термодина	е законы,	ать
	основные	мические	мические	термодина	основные
	химические	справочны	справочны	мические	химическ
	законы,	е данные и	е данные и	справочны	ие законы,
	термодинамичес	количестве	количестве	е данные и	термодина
	кие справочные	нны е	нны е	количестве	мические
	данные и	соотношен	соотношен	нны е	справочн
	количественные	ия общей	ия общей	соотношен	ые данные
	соотношения	химии для	химии для	ия общей	и
	общей химии	решения	решения	химии для	количеств
	для решения	профессио	профессио	решения	енны е
	профессиональн	нальных	нальных	профессио	соотноше
	ых задач	задач, не	задач,	нальных	ния общей
	ыл зада-1	допускает	допускает	задач,	химии,
		ошибок		*	допускает
		ошиоок	при этом	допускает ошибки.	грубые
			ряд небольших	ошиоки. Задание	труоыс
				* *	
			ошибок	выполнено	
				не в	
				полном	
				объеме	
	владеть:	П	П	17	11
		Продемонс	Продемонс	Имеет	Не
		три	трированы	минимальн	продемон
	навыками	рованы	навыки	ый набор	стрирован
	теоретического и	навыки	определен	навыков	ы базовые
	экспериментальн	определен	ия пара-	определен	навыки
	ого	ия	метров и	ия	определен
		параметро	условий	параметро	ия пара-
	исследования	ВИ	осуществл	ВИ	метров и
	химических	условий	ения	условий	условий
	явлений;	осуществл	химически	осуществл	осуществл
	навыками	ения	x	ения	ения
	определения	химически	процессов,	химически	химическ
	возможности	X	их	X	их
	осуществления	процессов,	глубины и	процессов,	процессов
	химических	их	пределов	допускает	-F
1				Acrij chaci	,
	процессов, их		протекани	много	лопушены
	глубины и	глубины и	протекани	много	допущены
	_	глубины и пределов	я, имеются	много ошибок	грубые
	глубины и	глубины и пределов протекани	_		-
	глубины и пределов	глубины и пределов протекани я, ошибки	я, имеются		грубые
	глубины и пределов	глубины и пределов протекани	я, имеются		грубые

Оценочные материалы для проведения текущего контроля и промежуточной аттестации приведены в Приложении к рабочей программе дисциплины.

Полный комплект заданий и материалов, необходимых для оценивания результатов обучения по дисциплине, хранится на кафедре разработчика.

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Учебно-методическое обеспечение

5.1.1. Основная литература

- 1. Павлов Н. Н. Общая и неорганическая химия: учебник для вузов / Н. Н. Павлов. 4-е изд., стер. Санкт-Петербург: Лань, 2021. —496 с. ISBN 978-5-8114-8579-6. —Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/177840.
- 2. Сироткин, О. С., Химия: учебник / О. С. Сироткин, Р. О. Сироткин. Москва : КноРус, 2023. 363 с. ISBN 978-5-406-11854-2. URL: https://book.ru/book/949868. Текст : электронный.
- 3. Глинка Н.Л. Общая химия: учебное пособие / Глинка Н., Л. Москва: КноРус, 2023. — 749 с. — ISBN 978-5-406-11166-6. — URL: https://book.ru/book/947684.

5.1.2.Дополнительная литература

- 1. Черникова, Н. Ю. Задачи по основам общей химии для самостоятельной работы с ответами и решениями : учебное пособие для вузов / Н. Ю. Черникова, Е. В. Мещерякова. 2-е изд., стер. Санкт-Петербург : Лань, 2022. 304 с. ISBN 978-5-8114-9699-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/197731.
- 2. Общая химия. Теория и задачи / Н. В. Коровин, Н. В. Кулешов, О. Н. Гончарук [и др.]; Под ред.: Коровин Н. В., Кулешов Н. В., 7-е изд., стер. Санкт-Петербург: Лань, 2023. 492 с. ISBN 978-5-507-45895-0. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/291182.
- 3. Коровин Н.В. Общая химия: лабораторный практикум: учебное пособие / Коровин Н., В., под общ., ред., Камышова В., К., Удрис Е. Я. Москва: КноРус, 2022. 335 с. ISBN 978-5-406-09543-0. URL: https://book.ru/book/943190.
- 4. Химия: практикум / сост.: Гибадуллина Х. В., Гайнутдинова Д. Ф.. Казань: КГЭУ, 2021. 164 с. URL: https://lib.kgeu.ru/. Текст: электронный.
- 5. Кудряшова, О. С. Общая и неорганическая химия : учебное пособие / О. С. Кудряшова. Пермь : ПГАТУ, 2023. 219 с. ISBN 978-5-94279-597-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/366044.

5.2. Информационное обеспечение

5.2.1. Электронные и интернет-ресурсы

- 1. Электронно-библиотечная система «Лань», https://e.lanbook.com/
- 3. Электронно-библиотечная система «book.ru», https://www.book.ru/

- 4. Энциклопедии, словари, справочники, http://www.rubricon.com
- 5. Единое окно доступа к образовательным ресурсам http://window.edu.ru

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Учебно-методическое обеспечение

5.1.1. Основная литература

- 1. Павлов Н. Н. Общая и неорганическая химия: учебник для вузов / Н. Н. Павлов. 4-е изд., стер. Санкт-Петербург: Лань, 2021. -496 с. ISBN 978-5-8114-8579-6. -Текст: электронный // Лань: электронно-библиотечная система. URL: https://e-lanbook.com/bookyi 77840.
- 2. Сироткин, О. С., Химия: учебник / О. С. Сироткин, Р. О. Сироткин. Москва: КноРус, 2023. 363 с. ISBN 978-5-406-11854-2. URL: https://book.ru/book/949868. Текст: электронный.
- 3. Глинка Н.Л. Общая химия: учебное пособие / Глинка Н., Л. Москва: КноРус, 2023. - 749 с. - ISBN 978-5-406-11166-6. - URL: https://book.ru/book/947684.

5.1.2. Дополнительная литература

- H. Ю. Задачи общей Черникова, ПО основам химии ДЛЯ самостоятельной работы с ответами и решениями : учебное пособие для вузов / Н. Ю. Черникова, Е. В. Мещерякова. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 304 с. — ISBN 978-5-8114-9699-0. — Текст : электронный II Лань: электронно-библиотечная URL: система. https://e.lanbook.com/book/197731.
- 2. Общая химия. Теория и задачи / Н. В. Коровин, Н. В. Кулешов, О. Н. Гончарук [и др.]; Под ред.: Коровин Н. В., Кулешов Н. В. 7-е изд., стер. Санкт-Петербург: Лань, 2023. 492 с. ISBN 978-5-507-45895-0. Т екст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/291182.
- 3. Коровин Н.В. Общая химия: лабораторный практикум: учебное пособие / Коровин Н., В., под общ., ред., Камышова В., К., Удрис Е. Я. Москва: КноРус, 2022. 335 с. ISBN 978-5-406-09543-0. URL: https://book.ru/book/943190.
- 4. Химия: практикум / сост.: Гибадуллина Х. В., Гайнутдинова Д. Ф.. Казань: КГЭУ, 2021. 164 с. URL: https://lib.kgeu.ru/. Текст: электронный.
- 5. Кудряшова, О. С. Общая и неорганическая химия : учебное пособие / О. С. Кудряшова. Пермь : ПГАТУ, 2023. 219 с. ISBN 978-5-94279-597-9. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/366044.

5.2. Информационное обеспечение

5.2.1. Электронные и интернет-ресурсы

- 1. Электронно-библиотечная система «Лань», https://e.lanbook.com/ Электронно-библиотечная система «book.ru».https://www.book.ru/ Энциклопедии, словари, справочники, http://window.edii.ru Единое окно доступа к образовательным ресурсам http://window.edii.ru
- 5.2.2. Профессиональные базы данных / Информационно-справочные системы
 - 1. Научная электронная библиотека http://elibrary.ru
 - 2. Российская государственная библиотека http://www.rsl.ru
 - 3. Образовательный портал http://www.ucheba.com
- 5.2.3. Лицензионное и свободно распространяемое программное обеспечение дисциплины
 - 1. Windows 7 Профессиональная (Pro)
 - 2. Браузер Chrome
 - 3. Adobe Acrobat
 - 4. LMS Moodle

6. Материально-техническое обеспечение дисциплины

Наименование вида учебной работы	Наименование учебной аудитории, специализированной лаборатории	Перечень необходимого оборудования и технических средств обучения
Лекции	Учебная аудитория для проведения занятий лекционного типа, В-503	Специализированная учебная мебель, технические средства обучения, служащие для представления учебной информации большой аудитории (мультимедийный проектор, компьютер (ноутбук), экран), демонстрационное оборудование, учебнонаглядные пособия
Практические занятия	Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, B-513	Специализированная учебная мебель, технические средства обучения (мультимедийный проектор, компьютер (ноутбук), экран) и др.

Лабораторные		Специализированное лабораторное
работы	Учебная лаборатория	оборудование по профилю лаборатории:
1	B-519	рефрактометр ИРФ -45462М,
		фотоколориметр КФК-3-01,
		колбонагреватель ПЭ-4100М, весы
		электронные лабораторные, рН- метр
		АНИОН-4100, штативы металлические (4
		шт.), плитка электрическая, химические
		реактивы (от 10 г до 1 кг. в стеклянной и
		пластиковой таре), химическая стеклянная
		посуда (от 1 мл до 1 л.), таблица
		Менделеева, таблица по ТБ, таблица
		"Стандартный ряд электронов"
		Специализированное лабораторное
		оборудование по профилю лаборатории:
		доска аудиторная, устройство
		выпрямительное ВСА-5К, штативы
	W 5	металлические (2 шт.), химические
	Учебная аудитория В-510	реактивы (от 10 г до 1 кг. в стеклянной и
		пластиковой таре), химическая стеклянная
		посуда (от 1 мл до 2 л.), таблица
		Менделеева, таблица по ТБ, таблица
		"Стандартный ряд электронов"
Самостоятельная	Компьютерный класс с	Специализированная учебная мебель на
работа	выходом в Интернет	30 посадочных мест, 30 компьютеров,
	B-600a	технические средства обучения
		(мультиме-дийный проектор, компьютер
		(ноутбук), экран), видеокамеры,
		программное обеспечение
		Специализированная мебель,
	Читальный зал	компьютерная техника с возможностью
	читальный зал библиотеки	выхода в Интернет и обеспечением
	ОИОЛИОТСКИ	доступа в ЭИОС, экран, мультимедийный
		проектор, программное обеспечение

7. Особенности организации образовательной деятельности для лиц с ограниченными возможностями здоровья и инвалидов

Лица с ограниченными возможностями здоровья (ОВЗ) и инвалиды имеют возможность беспрепятственно перемещаться из одного учебнолабораторного корпуса в другой, подняться на все этажи учебно-лабораторных корпусов, заниматься в учебных и иных помещениях с учетом особенностей психофизического развития и состояния здоровья.

Для обучения лиц с OB3 и инвалидов, имеющих нарушения опорнодвигательного аппарата, обеспечены условия беспрепятственного доступа во все учебные помещения. Информация о специальных условиях, созданных для обучающихся с OB3 и инвалидов, размещена на сайте университета

<u>www//kgeu.ru</u>. Имеется возможность оказания технической помощи ассистентом, а также услуг сурдопереводчиков и тифлосурдопереводчиков.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушенным слухом справочного, учебного материала по дисциплине обеспечиваются следующие условия:

- для лучшей ориентации в аудитории, применяются сигналы оповещения о начале и конце занятия (слово «звонок» пишется на доске);
- внимание слабослышащего обучающегося привлекается педагогом жестом (на плечо кладется рука, осуществляется нерезкое похлопывание);
- разговаривая с обучающимся, педагогический работник смотрит на него, говорит ясно, короткими предложениями, обеспечивая возможность чтения по губам.

Компенсация затруднений речевого и интеллектуального развития слабослышащих обучающихся проводится путем:

- использования схем, диаграмм, рисунков, компьютерных презентаций с гиперссылками, комментирующими отдельные компоненты изображения;
- регулярного применения упражнений на графическое выделение существенных признаков предметов и явлений;
- обеспечения возможности для обучающегося получить адресную консультацию по электронной почте по мере необходимости.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушениями зрения справочного, учебного, просветительского материала, предусмотренного образовательной программой по выбранному направлению подготовки, обеспечиваются следующие условия:

- ведется адаптация официального сайта в сети Интернет с учетом особых потребностей инвалидов по зрению, обеспечивается наличие крупношрифтовой справочной информации о расписании учебных занятий;
- педагогический работник, его собеседник (при необходимости), присутствующие на занятии, представляются обучающимся, при этом каждый раз называется тот, к кому педагогический работник обращается;
- действия, жесты, перемещения педагогического работника коротко и ясно комментируются;
- печатная информация предоставляется крупным шрифтом (от 18 пунктов), тотально озвучивается;
 - обеспечивается необходимый уровень освещенности помещений;
- предоставляется возможность использовать компьютеры во время занятий и право записи объяснений на диктофон (по желанию обучающихся).

Форма проведения текущей и промежуточной аттестации для обучающихся с ОВЗ и инвалидов определяется педагогическим работником в соответствии с учебным планом. При необходимости обучающемуся с ОВЗ, инвалиду с учетом их индивидуальных психофизических особенностей дается

возможность пройти промежуточную аттестацию устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п., либо предоставляется дополнительное время для подготовки ответа.

8. Методические рекомендации для преподавателей по организации воспитательной работы с обучающимися.

Методическое обеспечение процесса воспитания обучающихся выступает одним из определяющих факторов высокого качества образования. Преподаватель вуза, демонстрируя высокий профессионализм, эрудицию, четкую гражданскую позицию, самодисциплину, творческий подход в решении профессиональных задач, в ходе образовательного процесса способствует формированию гармоничной личности.

При реализации дисциплины преподаватель может использовать следующие методы воспитательной работы:

- методы формирования сознания личности (беседа, диспут, внушение, инструктаж, контроль, объяснение, пример, самоконтроль, рассказ, совет, убеждение и др.);
- методы организации деятельности и формирования опыта поведения (задание, общественное мнение, педагогическое требование, поручение, приучение, создание воспитывающих ситуаций, тренинг, упражнение, и др.);
- методы мотивации деятельности и поведения (одобрение, поощрение социальной активности, порицание, создание ситуаций успеха, создание ситуаций для эмоционально-нравственных переживаний, соревнование и др.)

При реализации дисциплины преподаватель должен учитывать следующие направления воспитательной деятельности:

Гражданское и патриотическое воспитание:

- формирование у обучающихся целостного мировоззрения, российской идентичности, уважения к своей семье, обществу, государству, принятым в семье и обществе духовно-нравственным и социокультурным ценностям, к национальному, культурному и историческому наследию, формирование стремления к его сохранению и развитию;
- формирование у обучающихся активной гражданской позиции, основанной на традиционных культурных, духовных и нравственных ценностях российского общества, для повышения способности ответственно реализовывать свои конституционные права и обязанности;
- развитие правовой и политической культуры обучающихся, расширение конструктивного участия в принятии решений, затрагивающих их права и интересы, в том числе в различных формах самоорганизации, самоуправления, общественно-значимой деятельности;
 - -формирование мотивов, нравственных и смысловых установок

личности, позволяющих противостоять экстремизму, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам, межэтнической и межконфессиональной нетерпимости, другим негативным социальным явлениям.

Духовно-нравственное воспитание:

- воспитание чувства достоинства, чести и честности, совестливости, уважения к родителям, учителям, людям старшего поколения;
- формирование принципов коллективизма и солидарности, духа милосердия и сострадания, привычки заботиться о людях, находящихся в трудной жизненной ситуации;
- формирование солидарности и чувства социальной ответственности по отношению к людям с ограниченными возможностями здоровья, преодоление психологических барьеров по отношению к людям с ограниченными возможностями;
- формирование эмоционально насыщенного и духовно возвышенного отношения к миру, способности и умения передавать другим свой эстетический опыт.

Культурно-просветительское воспитание:

- формирование эстетической картины мира;
- формирование уважения к культурным ценностям родного города, края, страны;
 - повышение познавательной активности обучающихся.

Научно-образовательное воспитание:

- формирование у обучающихся научного мировоззрения;
- формирование умения получать знания;
- формирование навыков анализа и синтеза информации, в том числе в профессиональной области.

Вносимые изменения и утверждения на новый учебный год

	No	Дата		«Согласов	«Согласовано»
	разде	внесен		ано»	председатель
	ла	ия		Зав. каф.	УМК института
	внесе	измене		реализую	(факультета), в
$N_{\underline{0}}$	ния	ний	Содержание изменений	щей	состав
Π/Π	изме			дисциплин	которого
	нени			У	входит
	й				выпускающая
					кафедра)
1	2	3	4	5	6
1					
2					
3					

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по дисциплине

Б1.О.14 Химия

Оценочные материалы по дисциплине, предназначенны для оценивания результатов обучения на соответствие индикаторам достижения компетенций.

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля (ТК) и промежуточной аттестации, проводимых по балльно-рейтинговой системе (БРС).

1.Технологическая карта

Семестр 1

Семестр 1		I								
		Рейтинговые показатели								
Наименование раздела	Формы и вид	І текущий контроль	Дополнительные баллы к ТК1	ІІ текущий контроль	Дополнительные баллы к ТК2	III текущий контроль	Дополнительные баллы к ТК3	Итого	Промежуточная аттестация	
Раздел 1. « Строение вещества.	ТК1									
Свойства основных видов		15	0-15					15-	15-30	
химических веществ и классов		13	0-13					30	13-30	
химических объектов »										
Тест или контрольная		7								
Защита лабораторной работы		5								
Отчет по самостоятельной		3								
работе		3								
Раздел 2. « Общие	ТК2									
закономерности химических				20	0-			15-	20-30	
процессов. Растворы и другие				20	20			30	20-50	
дисперсные системы »										
Тест или письменный опрос				7						
Защита лабораторной работы				8						
Отчет по самостоятельной				5						
работе										
Раздел 3. « Окислительно-	ТК3									
восстановительные реакции и						20	0-	20-	20-40	
электрохимические процессы.						20 20		40	20 .0	
Коррозия металлов »										
Тест или письменный опрос						7				
Защита лабораторной работы						8				
Отчет по самостоятельной						5				
работе										

Промежуточная аттестация	OM				0-45
(зачет, экзамен, КП, КР)					0-43
Задание промежуточной аттестации					0-15
В письменной форме по билетам					0-30

2. Оценочные материалы текущего контроля и промежуточной аттестации

Шкала оценки результатов обучения по дисциплине:

			Уровень сформированности				
			индикатора компетенции				
		Заплани-	Высокий	Средний	Ниже среднего	Низкий	
Код	Код индикатора	рованные	от 85 до	от 70 до	от 55 до	от 0 до	
компе-	компетенци	результаты	100	84	69	54	
тенции	И	обучения по		Шкала оп	енивания		
		дисциплине			удовлет-	неудов-	
			отлично	хорошо	ворительн	летвори-	
					O	тельно	
				зачтено		не зачтено	
		знать:					
			Знает	Знает	Знает	Знает	
			фундамент	фундамент	фундамент	фундамен	
			альные	альные	альные	тальные	
			законы	законы	законы	законы	
			химии;	химии;	химии;	химии;	
			современн	современн	современн	современн	
		Знает	ые	ые	ые	ые	
		фундаментальны	понятия и	понятия и	понятия и	понятия и	
		е законы химии;	модели	модели	модели	модели	
		современные	химически	химически	химически	химическ	
		понятия и	х систем;	х систем,	х систем,	их систем,	
		модели	реакционн	при ответе	допускает	допускает	
		химических	ую	может	множество	грубые	
ОПК-1	ОПК-1.3	систем;	способнос	допустить	мелких	ошибки	
	OHK 1.5	реакционную	ТЬ	несколько	ошибок		
		способность	химически	не грубых			
		химических	X	ошибок			
		соединений	соединени				
		разных классов	й разных				
		неорганических	классов				
		и органических	неорганич				
		веществ	еских и				
			органическ				
			их веществ,				
			не				
			допускает				
			ошибок				
		уметь:	Jimook	l	l		
		JANCIB.					

Демонстриру умение использовать основные химические законы, термодинами кие справочы данные и количествены соотношения общей химии для решения профессиона ых задач	термодина мические справочны е данные и количестве нны е соотношен ия общей ные химии для решения профессио нальных	Демонстри рует умение использова ть основные химически е законы, термодина мические справочны е данные и количестве нны е соотношен ия общей химии для решения профессио нальных задач, допускает при этом ряд небольших ошибок	В целом демонстри рует умение использова ть основные химически е законы, термодина мические справочны е данные и количестве нны е соотношен ия общей химии для решения профессио нальных задач, допускает ошибки. Задание выполнено не в	При решении типовых задач демонстри рует умение использов ать основные химическ ие законы, термодина мические справочные данные и количеств енны е соотноше ния общей химии, допускает грубые
			полном объеме	
владеть:	Продемонс	Продемонс	Имеет	Не
Владеет навыками теоретическо эксперимент ого исследовани химических явлений; навыками определения возможности осуществлен химических процессов, и глубины и пределов протекания	трированы навыки определен ия параметро в и условий осуществления химически х процессов, их глубины и	трированы навыки определен ия параметро в и условий осуществл ения химически х процессов, их глубины и пределов протекани я, имеются недочеты	минимальн ый набор навыков определен ия параметро в и условий осуществления химически х процессов, допускает много ошибок	продемон стрирован ы базовые навыки определен ия параметро в и условий осуществл ения химическ их процессов , допущены грубые ошибки

Оценка **«отлично»** выставляется за выполнение расчетных работ в семестре; тестовых заданий; оформление и представление отчетов по лабораторным работам; полные и содержательные ответы на вопросы билета (теоретическое и практическое задание);

Оценка **«хорошо»** выставляется за выполнение расчетных работ в семестре; тестовых заданий; оформление и представление отчетов по лабораторным работам; ответы на вопросы билета (теоретическое или практическое задание);

Оценка **«удовлетворительно»** выставляется за выполнение *расчетных* работ в семестре и тестовых заданий;

Оценка **«неудовлетворительно»** выставляется за слабое и неполное выполнение расчетных работ в семестре и тестовых заданий; отсутствие отчетов по лабораторным работам.

3. Перечень оценочных средств

Краткая характеристика оценочных средств, используемых при текущем контроле успеваемости и промежуточной аттестации обучающегося по дисциплине:

Наименование		Описание		
оценочного	Краткая характеристика оценочного средства оценоч			
средства		средства		
	Сположно проволен умогий примогиять получения го	Комплект		
Контрольная	Средство проверки умений применять полученные	контрольных		
работа (КнтР)	знания для решения задач определенного типа по	заданий по		
	теме или разделу	вариантам		
		Перечень заданий и		
Отчет по	Выполнение лабораторной работы, обработка	вопросов для		
лабораторной	результатов испытаний, измерений, эксперимента.	защиты		
работе (ОЛР)	Оформление отчета, защита результатов	лабораторной		
padore (Ohr)	лабораторной работы по отчету	работы, перечень		
		требований к отчету		
	Система стандартизированных заданий,			
Тест (Тест)	позволяющая автоматизировать процедуру	Комплект тестовых		
1601 (1601)	измерения уровня знаний и умений обучающегося	заданий		

4. Перечень контрольных заданий или иные материалы, необходимые для оценки знаний, умений и навыков, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Для текущего контроля:

Проверяемая компетенция: ОПК-1.3 Демонстрирует знание основных законов химии и понимание химических процессов

Тестовые задания

20. Для того чтобы скорость гомогенной элементарной реакции
$2NO + O_2 \rightarrow 2NO_2$
не изменилась при уменьшении концентрации оксида азота (II) в 2 раза
необходимо концентрацию кислорода увеличить в раз.
21. Для экзотермического процесса синтеза аммиака одновременное
понижение температуры и увеличение давления выход аммиака.
23. Дополните предложение. Химические реакции, протекающие в
противоположных направлениях, называются
24. Дополните предложение. Направление смещения равновесия при
оказании на систему воздействия, определяется правилом
25. Дополните предложение. Имеются 0,1 М растворы кислот:
муравьиной и уксусной ($K_{\pi}(HCOOH) = 1.8 \cdot 10^{-4}$, $K_{\pi}(CH_3COOH) = 1.8 \cdot 10^{-5}$).
Концентрация ионов водорода больше в растворе кислоты в раз(а).
26. Дополните предложение. Значение рН, при котором начнется
осаждение гидроксида железа (II) из 0,001 M раствора его сульфата, равно
$(\Pi P(Fe(OH)_2 = 8 \cdot 10^{-16}).$
27. Дополните предложение. Значение рН раствора, полученного при
смешении 400 мл 0,025 М раствора гидроксида калия и 100 мл 0,050 М
раствора хлорной кислоты, равно
28. Значение рН раствора, 500 мл которого содержит 0,2 г гидроксида
натрия ($\alpha = 1$), равно:
29 . Раствор H ₂ SO ₄ имеет среду.
30. Сумма коэффициентов в сокращенном молекулярно-ионном
уравнении реакции между раствором гидрофосфата калия и избытком раствора
гидроксида бария равна
31. В уравнении для расчёта константы гидролиза ацетата натрия не
учитывается значение концентрации
32 . Объем 83%-ного раствора серной кислоты $(r = 1,76 \text{ г/мл}),$
необходимый для приготовления 500 мл раствора с молярной концентрацией
кислоты 2 моль/л, равен мл (с точностью до целых).
33 . В 500 см ³ воды растворили 105 г фторида натрия. Моляльность
раствора составляет моль/кг.
34. В 250 граммах воды растворен неэлектролит с молярной массой 340
Γ /моль. Раствор замерзает при -0.28 °C. Масса вещества в растворе составляет

35. Водный раствор неэлектролита замерзает при -1,86°C. Концентрация

36. Массовая доля хлорида натрия в физиологическом растворе,

осмотическое давление которого при 25°C составляет 762,7 кПа (α = 1, ρ = 1

вещества в растворе составляет __ моль/кг (град \cdot кг \cdot моль⁻¹).

 $\Gamma/\text{см}^3$), равна _____ % (с точностью до целых).

граммов.

37. При 20°C давление насыщенного пара бензола равно 100 кПа.
Давление насыщенного пара над раствором бензола (М=78 г/моль), в 83 г
которого содержится 12,8 г нафталина (М=128 г/моль), составляет кПа.
38 . 500 см ³ водного раствора, содержащего 106 г карбоната натрия,
разбавили дистиллированной водой в два раза. Молярная концентрация
карбоната натрия в полученном раствора составляет моль/л.
39. Дополните определение. При электролизе катод имеет заряд.
40. Дополните определение. При электролизе анод имеет заряд.
41. При электролизе на катоде протекают процессы
42. При электролизе на аноде протекают процессы
43. Окислительно-восстановительное разложение вещества под
действием проходящего через него постоянного электрического тока
называется .
44. Молярная масса эквивалента фосфора в фосфорном ангидриде равна
·
45. ЭДС медного концентрационного гальванического элемента будет
иметь наибольшее значение, если один из электродов стандартный, а другой
погружен в раствор, концентрация ионов меди в котором составляет
моль/л.
46. В цинково-кадмиевом гальваническом элементе в качестве анода в
стандартных условиях т выступает электрод.
47. Железное изделие имеет покрытие из цинка. Это покрытие
называется и защищает металл от коррозии при нарушении покрытия.
48. При коррозии на анодных участках поверхности металла протекают
реакции
49. При повышенной влажности наиболее коррозионно-активным газом
является
50. Процессы взаимного превращения химической и электрической
энергии называются процессами.
51 . При электролизе раствора хлорида меди(II) на катоде выделилось 12,7
г меди. Объём газа (н.у.), выделившегося на аноде, равен
52. В окислительно-восстановительной реакции
$K_2FeO_4 + HCl \rightarrow FeCl_3 + Cl_2 + KCl + H_2O$,
Cl_2 играет роль
53. Водород во всех соединениях (за исключением гидридов металлов)
проявляет степень окисления .
54. Щелочные металлы во всех своих соединениях проявляют одну и ту
же степень окисления .
55. Сумма степеней окисления всех атомов, входящих в состав иона,
равна .
56. Окислительно-восстановительная реакция
f 1

$KMnO_4 + HCl \rightarrow KCl + MnCl_2 + O$	$Cl_2 + H_2O$
протекает в среде.	
57. Окислительно-восстановител	вная реакция
$K_2FeO_4 + HCl \rightarrow FeCl_3 + Cl_2 + KO$	$Cl + H_2O$
протекает в среде.	
58. Окислительно-восстановител	вная реакция
$Cr + KNO_3 + KOH \rightarrow K_2CrO4 + K$	$INO_2 + H_2O$
протекает в среде.	
59. Окислительно-восстановител	вная реакция
$MnCl_2 + Br_2 + NaOH \rightarrow MnO_2 + I$	$H_2O + NaBr + NaCl$
протекает в среде.	
60. Окислительно-восстановител	вная реакция
$Si + NaOH + H_2O \rightarrow Na_2SiO_3 + H$	2
протекает в среде.	
61. Окислительно-восстановите.	льная реакция
$P + I_2 + H_2O \longrightarrow H_3PO_3 + HI$	
протекает в среде.	
62. Сумма коэффициентов в лево	ой части уравнения реакции
$KMnO_4 + K_2SO_3 + H_2SO_4 \rightarrow \dots co$	ставляет
63. Сумма коэффициентов в уран	внении реакции, соответствующая схеме
$NH_3 + O_2 \rightarrow NO + H_2O$, составляет	
64. Реакции, протекающие с изм	енением степеней окисления
участвующих в них веществ, называю	гся реакциями.
65. Степень окисления элементо	ов в простых веществах равна
66. Дополните предложение. Из	з раствора сульфата меди (II) выпадает
голубой студенистый осадок при доба	влении
67. Установите соответствие меж	кду математическим выражением правила
(закона) и его названием	
$1) K_{\mathcal{A}} = \frac{\alpha^2 \cdot c_M}{1 - \alpha}$	А) Закон Генри
2) $\beta = (c_{\Gamma} / c_0) \cdot 100\%$	Б) Закон Вант-Гоффа
3) $c_{\mathbf{x}} = K \cdot p$	В) І закон Рауля
$4) p_{\text{ocm}} = c_{\text{M}} \cdot R \cdot T$	Г) Закон разведения Оствальда
$5) \frac{p_0 - p}{p_0} = \frac{n}{N+n},$	
68. Дополните предложение. М	Mагнитное квантовое число для $n = 2$

принимает ____ значений. **69**. В атоме молебдена (№ 42) содержится ____ протона

70. Установите в правильной последовательности возрастание энтропии
для простых веществ:
а) $H_2O_{(ж)};$ б) графит; в) $Br_{2(r)}.$
71. Дополните предложение. Теплота образования 1 моля воды из
простых веществ равна 242 кДж. Тепловой эффект реакции образования 9 г
воды кДж.
72. Выберите правильный ответ. Оксид, который является ангидридом
кремниевой кислоты это:
1) N_2O_3 ; 2) SO_2 ; 3) P_2O_5 ; 4) SiO_2 ; 5) CO_2 .
73. Дополните предложение. Из раствора сульфата меди (II) выпадает
голубой студенистый осадок при добавлении
74. Выберите правильный ответ. Осадок растворяется на стадии:
1 2 3 4
$Ca \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow Ca(HCO_3)_2 \rightarrow CO_2$
1) 1; 2) 2; 3) 3; 4) 4.
75. Выберите правильный ответ. Формула высшего оксида элемента с
зарядом ядра +25:
1) $9O_2$; 2) 9_2O_7 ; 3) $9O_3$; 4) 9_2O_3 .
76 . Выберите правильный ответ. В ряду превращений вещества $X_1,\ X_2$
это:
$Fe \xrightarrow{+H_2SO_{4(K)}} X_1 \xrightarrow{+BaCl_2} X_2 \xrightarrow{+NaOH} Fe(OH)_3$
$Fe \longrightarrow X_1 \longrightarrow X_2 \longrightarrow Fe(OH)_3$
1) F ₂ CO = F ₂ Cl . 2) F ₂ (SO) = F ₂ Cl .
1) FeSO ₄ , FeCl ₂ ; 3) Fe ₂ (SO ₄) ₃ , FeCl ₂ ; 4) Fe ₂ (SO ₃) FeCl ₃
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ .
 2) FeS, FeCl₃; 4) Fe₂(SO₄)₃, FeCl₃. 77. Выберите правильный ответ. Оксид подобный по химическим
2) FeS, FeCl3; 4) Fe2(SO4)3, FeCl3. 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это:
2) FeS, FeCl $_3$; 4) Fe $_2$ (SO $_4$) $_3$, FeCl $_3$. 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al $_2$ O $_3$; 3) FeO; 4) CrO $_3$.
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но
 2) FeS, FeCl₃; 4) Fe₂(SO₄)₃, FeCl₃. 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al₂O₃; 3) FeO; 4) CrO₃. 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P₂O₅:
 2) FeS, FeCl₃; 4) Fe₂(SO₄)₃, FeCl₃. 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al₂O₃; 3) FeO; 4) CrO₃. 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P₂O₅: 1) вода; 3) гидроксид калия;
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ.
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота:
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота: 1) серная кислота; 3) оксид натрия;
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота: 1) серная кислота; 3) оксид натрия; 2) оксид фосфора (V); 4) гидроксид бария.
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота: 1) серная кислота; 3) оксид натрия; 2) оксид фосфора (V); 4) гидроксид бария. 80. Установите соответствие между элементом и формулой его высшего
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота: 1) серная кислота; 3) оксид натрия; 2) оксид фосфора (V); 4) гидроксид бария. 80. Установите соответствие между элементом и формулой его высшего оксида:
2) FeS, FeCl ₃ ; 4) Fe ₂ (SO ₄) ₃ , FeCl ₃ . 77. Выберите правильный ответ. Оксид подобный по химическим свойствам оксиду серы (VI) это: 1) CaO; 2) Al ₂ O ₃ ; 3) FeO; 4) CrO ₃ . 78. Выберите правильный ответ. Вещества, с которыми реагирует CaO, но не реагирует P ₂ O ₅ : 1) вода; 3) гидроксид калия; 2) соляная кислота; 4) углекислый газ. 79. Выберите правильный ответ. Вещества, с которыми реагирует соляная кислота: 1) серная кислота; 3) оксид натрия; 2) оксид фосфора (V); 4) гидроксид бария. 80. Установите соответствие между элементом и формулой его высшего

б) Э₂О₃

2) cepa

3) натрий	в) Э ₂ О ₅
4) алюминий	г) ЭО2
	д) Э ₂ О

81. Выберите правильный ответ. Соединения, в которых степень окисления серы равна +2:

1) Na₂SO₄;

2) Na₂S;

3) SCl₄;

4) $Na_2S_2O_3$;

5) H₂S.

82. Выберите правильный ответ. Процессы окисления:

1)
$$Fe^{2+} - 1\bar{e} \rightarrow Fe^{3+}$$

2)
$$MnO_4^- + 8H^+ + 5\bar{e} \rightarrow Mn^{2+} + 4H_2O;$$

3)
$$O_2 + 2H_2O + 4\bar{e} \rightarrow 4OH^-$$
;

4)
$$NO_2^- + H_2O - 2\bar{e} \rightarrow NO_3^- + 2H^+$$
.

83. Установите соответствие между полуреакцией восстановления и числом электронов участвующих в процессе

1) $ClO_3^- + 6H^+ + ne \rightarrow Cl^- + 3H_2O$	A) 1
2) $MnO_4^- + ne \rightarrow MnO_4^{2-}$	Б) 6
3) $Cl_2 + ne \rightarrow 2Cl^-$	B) 2
4) $\text{CrO}_{4}^{2-} + \text{ne} \rightarrow \text{CrO}_{2}^{-} + 4\text{OH}^{-}$	Γ) 3
	Д) 5

- **84**. Дополните предложение. Окислительно-восстановительная реакция $P + I_2 + H_2O \rightarrow H_3PO_4 + HI$ протекает в ____ среде.
- **85**. Выберите правильный ответ. Окислительно-восстановительными процессами являются:
- 1) взаимодействие кислоты со щелочью;
- 2) ржавление железа во влажном воздухе;
- 3) растворение поваренной соли;
- 4) разложение карбоната кальция.

86. Установите соответствие между составом иона и степенью окисления хлора:

1) Cl ₂	A) 0
2) ClO ⁻	Б) +1
3) ClO ₂	B) +2
4) ClO ₃	Γ) +3
5) ClO ₄	Д) + 5
	E) +7

87. Выберите правильный ответ. Коэффициент перед формулой окислителя в уравнении реакции, схема которой: $NH_3+O_2=NO+H_2O$

1) 1;

2) 2;

3) 3;

4) 5.

88. Выберите правильный ответ. Степень окисления восстановителя в
реакции, уравнение которой:
$4KI + O_2 + H_2O = 2KOH + I_2$
1) -1 ; 2) 0; 3) -2 ; 4) $+1$.
89. Выберите правильный ответ. Железо вытесняет металлы из растворов
их солей:
1) Zn; 2) Cu; 3) Mn; 4) Ag.
90. Выберите правильный ответ. Повышение степени окисления серы по
схеме превращения
$CuS \rightarrow CuSO_4 (от \rightarrow до)$
1) от +2 до +3; 3) от -2 до +4;
2) от -2 до +2; 4) от -2 до +6.
91. Выберите правильный ответ. Уравнение Нернста позволяет
рассчитать:
1) напряжение;
2) силу тока;
4) электродный равновесный потенциал;
5) стандартный электродный потенциал.
92. Дополните предложение. Гальванический элемент с одинаковыми
электродами и разными концентрациями солей называется
93. Выберите правильный ответ. В гальваническом элементе катодом
служит электрод с потенциалом:
1) более положительным;
2) менее положительным;
3) нулевым;
4) равновесным.
94. Дополните предложение это электрод на котором протекает
процесс восстановления.
95. Установите правильную последовательность возрастания ЭДС
гальванических элементов:
1) (-) $\operatorname{Cd}^{0} \operatorname{Cd}^{2+} \operatorname{Ag}^{+} \operatorname{Ag}^{0} (+);$
2) (-) $Zn^{0} Zn^{2+} Ag^{0} $ (+);
3) (-) $\operatorname{Fe}^{0} \operatorname{Fe}^{2+} \operatorname{Ag}^{+} \operatorname{Ag}^{0} (+);$
4) (-) $Cu^{0} Cu^{2+} Ag^{+} Ag^{0}$ (+).
96. Выберите правильный ответ. В процессе электролиза, анод
подвергающийся растворению, считается:
1) активным;
2) инертным;
3) стандартным;
4) равновесным.

- 97. Выберите правильный ответ. Первый закон Фарадея устанавливает связь между:
- 1) массой вещества и количеством электричества;
- 2) массой вещества и его эквивалентом;
- 3) массой вещества и силой тока;
- 4) массой вещества и напряжением.
- 98. Выберите правильный ответ. Первоочередным процессом на аноде при электролизе является процесс с потенциалом:
- 1) отрицательным;
- 2) наибольшим;
- 3) наименьшим;
- 4) нулевым.
- **99**. Выберите правильный ответ. При электролизе водного раствора K_2SO_4 на катоде протекает процесс:
- 1) $K^+ + \bar{e} = K^0$;
- 2) $2H_2O 4\bar{e} = 4H^+ + O_2\uparrow;$
- 3) $2H_2O + 2\bar{e} \rightarrow 2OH^- + H_2\uparrow$.
- **79**. Установите соответствие между электродом и схемой превращения при электролизе расплава NaCl:

1) катод	A) $2H^+ + 2\bar{e} \rightarrow H_2$
2) анод	$\text{ b) Na}^+ + \bar{e} \rightarrow \text{Na}^0$
	B) $2Cl^ 2\bar{e} \rightarrow Cl_2$
	Γ) $4OH^ 4\bar{e} \rightarrow O_2 + 2H_2O$

- 100. Дополните предложение. Разрушение металлов и сплавов под действием окружающей среды называется ____.
 - 101. Выберите правильный ответ. Химическая коррозия протекает:
- 1) в растворах электролитов;
- 2) во влажной атмосфере
- 3) в средах не проводящих ток;
- 4) в почве.
- **102**. Выберите правильный ответ. Электрохимическая коррозия протекает в:
- 1) растворах электролитов;
- 2) средах непроводящих ток;
- 3) сильно нагретых газах;
- 4) сухой атмосфере.
- 103. Выберите правильный ответ. При повышенной влажности наиболее коррозионно-активным газом является:
- 1) CO; 2) N_2 ; 3) SO_2 ; 4) CO_2 .

104. Выберите правильный ответ. Протекание корро	эии связано с
энергией Гиббса, при этом:	
1) $\Delta G > 0$; 2) $\Delta G < 0$; 3) $\Delta G = 0$;	4) $\Delta G > 1$.
105. Выберите правильный ответ. Анодное окислени	е металла при
электрохимической коррозии можно представить реакцией:	
1) $Me^0 - \bar{e} \rightarrow Me^{+n}$;	
2) $2H^+ + 2\bar{e} \rightarrow H_2$;	
3) $O_2 + 2H_2O + 4\bar{e} \rightarrow 4OH^-$;	
4) $O_2 + 4H^+ + 4\bar{e} \rightarrow 2H_2O$.	
106. Выберите правильный ответ. Роль катодного покрыт	гия на железном
изделии может выполнять металл:	
1) Mg; 2) Al; 3) Sn;	4) Zn.
107. Выберите правильный ответ. Роль анодного покрыти	ия на никелевом
изделии может выполнять металл:	
1) Cu; 2) Ag; 3) Sn;	4) Zn.
108. Установите соответствие между способом защит	ы металлов от
коррозии и примером:	
1) изменение свойств среды А) хромирование	
2) изменение свойств корродирующего Б) использование	ингибиторов
металла коррозии	
3) защитные покрытия В) обезжиривание	поверхности
изделия	
Г) легирование	
109. Дополните предложение. Прямое взаимодейств	ие металлов с
кислородом с образованием оксидов характерно для коррози	ии.
110. Выберите правильный ответ. Наибольшее количеств	о электричества
потребуется для получения путем электролиза (выход по току и	принять равным
100 %) 1 грамма:	
1) Cd; 2) Hg; 3) Cu; 4) Mg	g.
111. Дополните предложение. При электролизе раств	воров процессы
выделения водорода и осаждения металлов происходят на	
112. Выберите правильный ответ. При электролизе вод	дного раствора,
содержащего нитраты ртути (II), меди (II), никеля (II) и калия	н в стандартных
условиях, последовательность выделения металлов на катоде:	
1) Cu, Hg, Ni, H ₂ , K; 3) Hg, Cu, Ni, K;	
2) Hg, Cu, Ni, K, H ₂ ; 4) Hg, Cu, Ni, H ₂ .	
113. Выберите правильный ответ. При электролизе ра	створа хлорила
меди (II) на катоде выделилось 12,7 г меди. Объем газа (н.у.), вы	
аноде, равен:	
• •	

- 1) 8,96 л; 2) 6,72; 3) 4,48; 4) 2,24.
- 114. Выберите правильный ответ. При пропускании электрического тока через раствор нитрата серебра на угольном катоде выделяется:
- 1) кислород;

водород;

2) серебро;

- 4) вода.
- 115. Выберите правильный ответ. ЭДС гальванического элемента, состоящего из железного и серебряного электродов, погруженных в 0,1М растворы их нитратов равна:

 $(E^{0}(Fe^{2}+/Fe^{0}) = -0.44 \text{ B}; E^{0}(Ag^{+}/Ag^{0}) = +0.799 \text{ B})$

1) 1,24 B;

2) 1,21B; 3) -1,24B; 4) -1,21B.

Контрольные задания

Оценочные материалы для текущего контроля (ТК1)

Вариант 1

- 1) Для нейтрализации щавелевой кислоты гидроксидом калия на 1,125 г кислоты потребовалось 1 г гидроксида калия, молярная масса эквивалента которого равна 56 г/моль. Вычислите молярную массу эквивалента щавелевой кислоты.
- 2) Назовите элементы, имеющие по два электрона на подуровнях 4ри 4d. Напишите полные электронные формулы атомов этих элементов и укажите их положение в ПСЭ: период, группа, подгруппа.
- 3) При сгорании газообразного этана образуется СО2(г) и Н2О(ж). Напишите термохимическое уравнение этой реакции и вычислите тепловой эффект.

Вариант 2

- 1) Сколько литров водорода (н.у.) потребуется для восстановления 1,12 г оксида металла, содержащего 71,43 % металла? Чему равна молярная масса эквивалента металла?
- 2) Укажите порядковый номер элемента с окончанием электронной формулой $...6s^26p^3$. Назовите для него элемент, являющийся электронным аналогом. Ответ поясните.
- 3) Вычислите стандартную энтальпию реакции:
- $2 \text{ Mg(K)} + \text{CO2(\Gamma)} = 2 \text{MgO(K)} + \text{C(графит)}.$

Вариант 3

- 1) Известно, что 0,321 г алюминия и 0,168 г цинка вытесняют из кислоты одинаковое количество водорода. Найдите молярную массу эквивалента цинка, если молярная масса эквивалента алюминия равна 8,99 г/моль
- 2) Напишите полные электронные формулы атомов этих элементов и укажите их положение в ПСЭ: период, группа, подгруппа
- 3) При сгорании моля жидкого этилового спирта образуется СО2(г) и Н2О(ж).

Напишите термохимическое уравнение этой реакции и вычислите ее тепловой эффект.

Вариант 4

- 1) Определите молярную массу эквивалента металла, зная, что при соединении 7,2 г металла с хлором было получено 28,2 г соли.
- 2) Назовите элемент четвертого периода, атом которого содержит небольшое число неспаренных d-электронов. Напишите его полную электронную формулу и укажите валентные электроны.
- 3) При взаимодействии газообразного метана и сероводорода образуется CS2(г) и водород. Напишите термохимическое уравнение этой реакции вычислите ее тепловой эффект

Вариант 5

- 1) Вычислите молярные массы эквивалента серной кислоты в реакции с гидроксидом натрия с образованием кислой и средней соли.
- 2) Напишите электронные формулы двух элементов 4-го период: с одним неспаренным электроном и двумя неспаренными электронами. Назовите порядковые номера, укажите число протонов, нейтронов в их атомах.
- 3) Определите тепловой эффект реакции, протекающей по уравнению: $4NH_3(\Gamma)+5O_2(\Gamma)=4NO(\Gamma)+6H_2(\Gamma)$

Вариант 6

- 1) Какой будет величина молярной массы эквивалента гидроксида железа (II) в следующих реакциях:
- a) $4\text{Fe}(\text{OH})_2 = \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3$; б) $\text{Fe}(\text{OH})_2 + \text{HCl} \rightarrow \text{Fe}(\text{OH})\text{Cl} + \text{H}_2\text{O}$; в) $\text{Fe}(\text{OH})_2 + 2\text{HCl} \rightarrow \text{Fe}(\text{Cl}_2 + 2\text{H}_2\text{O})$.
- 2) Напишите электронные формулы атомов элементов с порядковыми номерами 37,46, 65. Укажите их положение в периодической системе: период, группа, подгруппа.
- 3) Определите тепловой эффект реакции: $2PbS(\kappa)+3O2(\Gamma)=2PbO(\kappa)+2SO2(\Gamma)$.

Вариант 7

- 1) Чему равна молярная масса эквивалента ортофосфорной кислоты в реакции: H3PO4 + Ca(OH)2 = CaHPO4 + 2H2O?
- 2) Сколько протонов, нейтронов, электронов содержится в атомах элементов с порядковыми номерами 9, 44, 63? Напишите их полные электроные формулы. Укажите валентные электроны, число неспаренных электронов.
- 3) Вычислите изменение энтропии для реакции: $2CH_4(\Gamma) = C_2H_2(\Gamma) + 3H_2(\Gamma)$.

Вариант 8

- 1) Сколько мл (см³) водорода (н.у.) выделилось при растворении в кислоте по 0,45 г металлов, молярные массы эквивалентов которых равны 9 г/моль и 20 г/моль. Какие это металлы, если известно, что их валентность, соответственно, равна 3 и 2?
- 2) Назовите элемент четвертого периода, атом которого содержит наибольшее

число неспаренных р-электронов. Напишите его полную электронную формулу и укажите валентные электроны.

3) Вычислите изменение энтропии в реакции: $N2(\Gamma)+3H2(\Gamma)=2NH3(\Gamma)$.

Вариант 9

- 1) На нейтрализацию 0,620 г гидроксида состава M(OH)2 израсходовано 0,535 г HNO3. Вычислите молярную массу эквивалента гидроксида и определите его состав.
- 2) Назовите элементы, имеющие по два электрона на подуровнях 3ри 3d. Напишите полные электронные формулы атомов этих элементов и укажите их положение в ПСЭ: период, группа, подгруппа.
- 3) Вычислите изменение энтропии в реакции: $Fe2O3(\kappa)+3CO(\Gamma)=2Fe(\kappa)+3CO2(\Gamma)$.

Вариант 10

- 1) Вычислите молярную массу эквивалента гидроксида железа (III) и основной соли в реакции: $Fe(OH)3 + HCl \rightarrow Fe(OH)2Cl + H2O$.
- 2) Укажите порядковый номер элемента, для которого окончание электронной формулы $4s^24p^3$. Назовите для него элемент, являющийся электронным аналогом. Напишите полную электронную формулы элемента аналога.
- 3) Вычислите значение энергии Гиббса реакции восстановления оксида железа (II) оксидом углерода

Вариант 11

- 1) Оксиды металла содержат 13,98 и 7,16 % кислорода. Вычислите молярную массу эквивалента металла в каждом соединении и объем кислорода, необходимый на реакцию в обоих случаях при н.у. и при 25 °C и 740 мм рт.ст.
- 2) Укажите порядковый номер элемента, в атоме которого завершается заполнение электронами второго энергетического уровня. Напишите его полную электронную формулу.
- 3) Возможна следующая реакция в стандартных условиях: $2Hg2Cl2(\kappa)=2HgCl2(\kappa)+2Hg(\kappa)$?

Вариант 12

- 1) При действии хлороводородной кислоты на 0,100 г металла из раствора выделилось 0,969 мл водорода, который собрали над водой при 19 °C и $105,1\cdot10^3$ Па. Вычислите молярную массу эквивалента металла, если давление пара воды при 19 °C равно $2,2\cdot10^3$ Па.
- 2) Назовите элементы, имеющие по три электрона на подуровнях 4р и 4d. Напишите полные электронные формулы атомов этих элементов и укажите их положение в ПСЭ: период, группа, подгруппа
- 3) Возможно или самопроизвольное протекание реакции $MgCO3(\kappa)=MgO(\kappa)+CO2(\Gamma)$ в стандартных условиях?

Вариант 13

- 1) 26,78 г цинка, реагируя с кислородом, дают 33,333 г оксида. Вычислите молярную массу эквивалента цинка и объем кислорода, необходимый на реакцию в н.у.
- 2) Укажите порядковые номера элементов, электронные формулы которых имеют окончание ns^2np^5 . Напишите полную электронную формулу элемента пятого периода.
- 3) Вычислите энергию Гиббса реакции $2PbS(\kappa)+3O2(\Gamma)=2PbO(\kappa)+SO2(\Gamma)$ и сделайте вывод о возможности самопроизвольного протекания этой реакции в прямом направлении в стандартных условиях

Вариант 14

- 1) При взаимодействии 0,1080 г металла с кислотой выделилось 53,46 мл водорода, который собрали над водой при 25 °C и $99,3\cdot10^3$ Па (парциальное давление паров воды при 25 °C равно 3132 Па). Вычислите молярную массу эквивалента металла.
- 2) Напишите электронные формулы атомов фосфора и ванадия. Укажите их валентные электроны. Являются ли они электронными аналогами?
- 3) Будет ли реакция $Cl2(\Gamma)+2HI(\Gamma)=I2(\kappa)+2HCI(\Gamma)$ самопроизвольно протекать в прямом направлении в стандартных условиях.

Вариант 15

- 1) При окислении кислородом 1,387 г металла получилось 2,62 г оксида. Вычислите молярную массу эквивалента металла и оксида, а также объем требуемого кислорода, если опыт проводили при 25 °C и 760 мм рт.ст.
- 2) Укажите порядковые номера элементов, электронные формулы которых имею окончание ns^2np^4 . Напишите полную электронную формулу элемента четвертого периода.
- 3) Вычислите энергию Гиббса для реакции $MgCO3(\kappa)=MgO(\kappa)+CO2(\Gamma)$ при 500° С.

Вариант 16

- 1) При прокаливании в хлоре из 4,02 г металла получено 8,87 г хлорида. Вычислите молярную массу эквивалента металла и хлорида, а также объем хлора, израсходованный на реакцию при н.у.
- 2) Для элементов с порядковыми номерами 17, 27, 99 укажите число протонов, нейтронов, электронов. Напишите их полные электронные формулы. Укажите валентные электроны, число неспаренных электронов. К какому типу s, p, d, f относятся эти элементы?
- 3) Установите в каком направлении будет самопроизвольно протекать реакция $Fe2O3(\kappa)+3CO(\Gamma)=2Fe(\kappa)+CO2(\Gamma)$ в стандартных условиях?

Вариант 17

1) Является ли молярная масса эквивалента элемента постоянной величиной? Чему равна молярная масса эквивалента хрома в оксидах следующего состава: а)

- 52 % хрома и 48 % кислорода; б) 68,42 % хрома и 31,58 % кислорода? Составьте формулы данных оксидов.
- 2) Напишите электронные формулы атомов элементов с порядковыми номерами 16, 54, 88. К какому типу s, p, d, f относятся эти элементы?
- 3) При соединении 2,1 г железа с серой выделилось 3,77 кДж. Вычислите энтальпию образования сульфида железа FeS.

Вариант 18

- 1) При взаимодействии 3,000 г железа с 985 г кислорода (22,5 °C и 100,4·10³ Па) получается 4,289 г оксида. Вычислите молярную массу эквивалента металла и предложите формулу оксида, соответствующую условиям задачи.
- 2) Напишите электронные формулы атомов элементов с порядковыми номерами 36, 58, 104. Укажите их положение в периодической системе: период, группа, подгруппа.
- 3) При восстановлении 12,7 г оксида меди (II) углем (с образованием СО) поглощается 8,24 кДж. Определите энтальпию образования СиО.

Вариант 19

- 1) При взаимодействии 0,563 г металла с водой выделилось 348,9 мл водорода при 24 °C и $99,43\cdot10^3$ Па. Вычислите молярную массу эквивалента металла. Предложите металл, который мог быть взят в этом опыте.
- 2) Напишите электронные формулы двух элементов 5-го периода: с одним неспаренным электроном и двумя неспаренными электронами. Назовите их порядковые номера, укажите число протонов и нейтронов в их атомов.
- 3) Определите стандартную энтальпию образования PH3, исходя из стандартной энтальпии реакции: $2PH3(\Gamma) + 4O2(\Gamma) = P2O5(\kappa) + H2O(\kappa)$; $\Delta H^0 = -2360 \, \kappa \text{Дж}$.

Вариант 20

- 1) При окислении 1,830 г металла кислородом образовалось 2,560 г оксида. Вычислите молярную массу эквивалента металла и оксида. Какой объем кислорода потребуется на эту реакцию при н.у.?
- 2) Сколько протонов, нейтронов, электронов содержится в атомах элементов с порядковыми номерами 3, 65, 86? Напишите их полные электронные формулы. Укажите валентные электроны, число неспаренных электронов.
- 3) Определите стандартную энтальпию образования ортофосфата кальция, исходя из энтальпии реакции: $3\text{CaO}(\kappa) + \text{P2O5}(\kappa) = \text{Ca3}(\text{PO4})2(\kappa)$; $\Delta H^0 = -739\kappa \text{Дж}$.

Оценочные материалы для текущего контроля ТК2

Вариант 1

1) Напишите выражения для констант равновесия следующих обратимых реакций: $2NO + O_2 \leftrightarrow 2NO_2$; $C + CO_2 \leftrightarrow 2CO$; $4HCl + O_2 \leftrightarrow 2H_2O + 2Cl_2$.

- 2) В реакции $C + 2H_2 = CH_4$ концентрация водорода увеличена в 2 раза. Во сколько раз возрастет скорость реакции?
- 3) Вычислите молярность и нормальность 40 %-ного раствора ортофосфорной кислоты (плотность 1,25 г/мл).
- 4) Вычислите активность ионов водорода в 0,01 М растворе серной кислоты.
- 5) $K_2S + KMnO_4 + H_2SO_4 = S + MnSO_4 + K_2SO_4 + H_2O$. В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Определите величину электродного потенциала серебра, погруженного в 0,01 М раствор нитрата серебра.

- 1) Напишите выражения для констант равновесия следующих обратимых реакций:
- $N_2 + O_2 \leftrightarrow 2NO; PCl_5 \leftrightarrow PCl_3 + Cl_2; N_2 + 3H_2 \leftrightarrow 2NH_3.$
- 2) Скорость некоторой химической реакции при 100° С равна единице. Во сколько раз медленнее будет протекать та же реакция при 10° С, температурный коэффициент равен 2.
- 3) Вычислите массовую долю и моляльность 8 М раствора азотной кислоты (плотность раствора 1,246 г/мл).
- 4) Вычислите ионную силу раствора, содержащего в 1 л 0,2 моль хлорида калия и 0,1 моль сульфата алюминия.
- 5) Zn + $H_2SeO_4 \square$ ZnSeO₄ + SeO_2 + H_2O . В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите электродные потенциалы никеля в растворе его соли при концентрации иона никеля 0,1 и 0,001 моль/л.

Вариант 3

1) Напишите выражения для констант равновесия следующих обратимых реакций:

- $SO2(\Gamma)+C(\kappa)=SO3(\Gamma)+CO(\Gamma)$; $CaO(\kappa)+3C(\kappa)=CaC2(\kappa)+CO(\Gamma)$.
- 2) При 393К реакция заканчивается за 18 мин. Через сколько времени эта реакция закончится при 453 К, если температурный коэффициент скорости равен 3.
- 3) NaI + $K_2Cr_2O_7$ + $HCl \rightarrow I_2$ + $CrCl_3$ + NaCl + KCl + H_2O . Вычислите молярную концентрацию эквивалента (нормальность) концентрированной 36,5 %-ной соляной кислоты (с плотностью 1,18 г/мл).
- 4) Вычислите приближенное значение активности ионов бария и хлорид анионов в 0,001 М растворе хлорида бария.
- 5) $Mn(NO_3)_2+KClO_3+H_2O=MnO_2+HNO_3+KCl$. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- б) При какой концентрации ионов олова в растворе потенциал электрода из олова, погруженный в этот раствор, будет иметь значение -0,195 В?

- 1) В какую сторону будет смещаться равновесие при повышении температурев системе $N_2+3H_2=2NH_3$?
- 2) Во сколько раз нужно изменить давление газовой смеси для того, чтобы увеличить скорость реакции $2SO_2+O_2=2SO_3$ в 27 раз?
- 3) Сколько миллилитров 70 %-ного раствора серной кислоты (с плотностью 1,622 г/мл) нужно взять для приготовления 250 мл 2 н. раствора серной кислоты?
- 4) Вычислите ионную силу и активность ионов в растворе, содержащем 0,01моль/л нитрата кальция и 0,01 моль/л хлорида кальция.
- 5) $KMnO_4+KI+H_2O=MnO_2+KOH+I2$. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Определите величину электродного потенциала меди, погруженной в раствор 0,002 М раствора сульфата меди.

- 1) В какую сторону будет смещаться равновесие при повышении температурыв системе $2CO_2=2CO+O_2$.
- 2) На сколько градусов нужно повысить температуру системы, чтобы скорость реакции возросла в 90 раз, если температурный коэффициент скорости реакции равен 2,7?
- 3) Сколько миллилитров 10%-ного раствора соляной кислоты (плотность 1,049 г/мл) нужно взять для приготовления 0,1 л 0,2 М раствора соляной кислоты?
- 4) Вычислите pH раствора, если концентрация гидроксид ионов равна $2,52 \cdot 10^{-5}$ моль/л.
- 5) $Na_2S2O3+Cl_2+H_2O=Na_2SO_4+S+HCl$. В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схемы двух гальванических элементов, в одном из которых медь

служила бы катодом, а в другом анодом. Напишите уравнения реакций, происходящих при работе этих элементов. Вычислите значения стандартных ЭДС для этих гальванических элементов.

Вариант 6

- 1) В какую сторону будет смещаться равновесие при повышении температурыв системе $4HCl+O_2=2Cl_2+2H_2O$.
- 2) На сколько градусов следует повысить температуру системы, чтобы скорость реакции возросла в 30 раз, если температурный коэффициент реакции равен 2,5?
- 3) Сколько миллилитров 49%-ного раствора орто-фосфорнойкислоты (плотность 1,33 г/мл) потребуется для приготовления 2 л 0,1 н. раствора?
- 4) Концентрация гидроксид ионов в растворе равна $4 \cdot 10^{-3}$ моль/л. Найдите концентрацию ионов водорода и рН раствора.
- 5) $KMnO4+K2SO_3+H_2O=MnO_2+K_2SO4+KOH$. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схемы двух гальванических элементов, в одном из которых свинец являлся бы катодом, а в другом анодом. Напишите уравнения реакций, происходящих при работе этих элементов. Вычислите значения стандартных ЭДС для этих гальванических элементов.

Вариант 7

- 1) Будет ли смещаться равновесие в системе $2SO_2+O_2=2SO_3$ при понижении давления и если будет, то в каком направлении?
- 2) Во сколько раз увеличится скорость химической реакции при повышении температуры от $10~\rm do~100^{\rm o}$ C, если температурный коэффициент реакции равен двум?
- 3) Сколько литров 5 М раствора гидроксила натрия можно приготовить из 4 л 50%-ного раствора с плотностью 1,525 г/мл?
- 4) Вычислите рН 0,001 н. раствора азотистой кислоты.
- 5) CuSO4+P+H2O=Cu+H3PO4+H2SO4. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схему работы гальванического элемента, образованного никелеми серебром, погруженными в 0,001 М растворы их солей. Вычислите ЭДС этого элемента.

- 1) Будет ли смещаться равновесие в системе $Cl_2+CO=COCl_2$ при повышении давления и, если будет, то в каком направлении?
- 2) Константа скорости реакции первого порядка при 288 К равна $2 \cdot 10^{-2}$ с⁻¹, а при 325 К 0,38 с⁻¹. Каковы температурный коэффициент скорости этой реакции и константа скорости этой реакции при температуре 303 К?
- 3) Какой объем раствора с массовой долей серной кислоты 90% (плотность

- равна 1,814 г/мл) нужно взять для приготовления раствора объемом 600 мл с молярной концентрацией эквивалента, равной 0,1 моль/л?
- 4) Вычислите активность ионов водорода и рН 0,1 М раствора соляной кислоты.
- 5) As+NaClO+H2O=H3AsO4+NaCl. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите ЭДМ серебряно-цинкового гальванического элемента, если известно, что образующие его электроды погружены в растворы их солей с концентрацией катиона 0,02 моль/л. Составьте схему элемента, запишите токообразующую реакцию.

- 1) Будет ли смещаться равновесие в системе $N_2+3H_2=2NH_3$ при понижении давления и, если будет, то в каком направлении?
- 2) Определите температурный коэффициент скорости реакции, если при понижении температуры на 45⁰ реакция замедлилась в 25 раз.
- 3) Сколько литров 0,1 н. раствора азотной кислоты можно приготовить из 0,04 л 30%-ного раствора (плотность 1,18 г/мл)?
- 4) Вычислите рН 0,001 н. раствора гидроксида калия.
- 5) KAsO2+Br2+KOH=K3AsO4+KBr+H2O. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите ЭДС гальванического элемента, образованного магнием и цинком, погруженными в растворы их солей с концентрацией ионом магния 10-5 миль /л, ионов цинка 10-2 моль/л. Напишите уравнения реакций, протекающих на аноде и на катоде. Составьте схему гальванического элемента.

- 1) В каком направлении будет смещаться равновесие реакции $2N_2+O_2=2N_2O$ при уменьшении объема?
- 2) На сколько градусов нужно повысить температуру, чтобы скорость реакции возросла в 90 раз? Температурный коэффициент равен 2,7.
- 3) Какой объем 2 М раствора карбоната натрия нужно взять, чтобы приготовить 1 л 0,25 н. раствора?
- 4) Водородный показатель раствора равен 12. Во сколько раз число гидроксильных ионов больше числа водородных ионов в этом растворе?
- 5) CrCl3+Br2+KOH=K2CrO4+KBr+KCl+H2O. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схему, напишите уравнения электродных процессов для гальванического элемента, состоящего из медной и кадмиевой пластин, погруженных в раствор, содержащий ионы металлов с концентрацией ионов кадмия и ионов меди 0,1 моль/л. Вычислите ЭДС этого элемента.

- 1) Реакция протекает по уравнению $CO+H_2O=CO_2+H_2$. В каком направлении сместится положение равновесия при введении в систему дополнительных количеств водорода?
- 2) В системе $CO+Cl_2=COCl_2$ концентрацию оксида углерода увеличили от 0,3 до 1,2 моль/л, а концентрацию хлора от 0,2 до 0,6 моль/л. Во сколько раз возрастет при этом скорость прямой реакции?
- 3) Сколько миллилитров 96 %-ного раствора серной кислоты (плотность 1,84 г/мл) можно взять для приготовления 1 л 0,25 М раствора?
- 4) Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: сульфида калия, сульфата меди (II).
- 5) NaClO₃+MnO₂+NaOH=Na₂MnO₄+NaCl+H₂O. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- б) Гальванический элемент составлен из стандартного цинкового электрода и хромового электрода, погруженного в раствор, содержащий ионы хрома(III). При какой концентрации ионов хрома ЭДС этого элемента будет равна нулю.

Вариант 12

- 1) В каком направлении будет смещаться положение равновесия обратимой химической реакции $2N_2+O_2=2N_2O$ при введении в реакционную смесь дополнительное количество азота?
- 2) Во сколько раз увеличится скорость реакции растворения железа в 5 %-ной соляной кислоте при повышении температуре на 32° , если температурный коэффициент скорости растворения равен 2,8?
- 3) Какой объем 68 %-ного раствора азотной кислоты с плотностью 1,4 г/мл нужно взять для приготовления 50 мл 2 н. раствора?
- 4) Напишите уравнения реакций гидролиза в молекулярном и ионномолекулярном виде для хлорида алюминия и ацетата натрия.
- 5) Ge + HNO₃ \square H₂GeO₃ + NO₂ + H₂O. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Гальванический элемент состоит их серебра, погруженного в раствор его соли с концентрацией ионов серебра 10^{-3} моль/л и никеля, погруженного в раствор его соли с концентрацией ионов никеля 10^{-1} моль/л. Вычислите ЭДС этого элемента.

Вариант 13

1) Почему при изменении давления смещается равновесие реакции $N_2+3H_2=2NH_3$ и не смещается равновесие реакции $N_2+O_2=2NO$?

- 2) Константа скорости некоторой реакции при 273 К равна $1,17 \text{ л·моль}^{-1} \cdot \text{мин}^{-1}$, а при 298 К-6,56 л·моль $^{-1} \cdot \text{мин}^{-1}$. Найдите температурный коэффициент скорости реакции.
- 3) Какой объем 20%-ной соляной кислоты потребуется для приготовления 1 л3 н. раствора?
- 4) Составьте уравнения гидролиза солей в молекулярном и ионномолекулярном виде: сульфита калия, сульфида алюминия.
- 5) $I_2+H_2SO_3+H_2O=HI+H_2SO_4$
- В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Какой гальванический элемент называют концентрационным? Составьте схему, напишите уравнения электродных процессов и вычислите ЭДС гальванического элемента, электроды у которого изготовлены из никеля. Один электрод погружен в раствор соли с концентрацией ионов никеля 0,00 1 моль/л, а другой в раствор соли с концентрацией ионов никеля 0,1 моль/л.

- 1) Концентрации каких веществ нужно взять в избытке чтобы сместить равновесие реакции $2SO_2+O_2=2SO_3$ в правую сторону?
- 2) Температурный коэффициент скорости реакции разложения йодоводорода $2HI=H_2+I_2$ равен2. Вычислите константу скорости этой реакции при 674 K, если при 629 K константа скорости равна $8,9\cdot10^{-5}$ л·моль⁻¹·с⁻¹.
- 3) Сколько литров 2,5 %-ного раствора гидроксила натрия (с плотностью 1,03 г/мл) можно приготовить из 800 мл 35%-ного раствора (с плотностью 1,38 г/мл).
- 4) Какую реакцию должны иметь растворы солей: ционата аммония, сульфата цинка. Ответ подтвердите соответствующими молекулярными и ионно- молекулярными уравнениями.
- 5) $CuSO_4+P+H_2O=Cu+H_3PO_4+H_2SO_4$. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) При каких условиях будет работать гальванический элемент, электроды которого сделаны из одного и того же металл? Составьте схему, напишете уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один серебряный электрод находится в 0,01 М, а другой серебряный электрод находится в 0,001 М растворе нитрата серебра.

- 1) Будет ли влиять на равновесную концентрацию CO_2 в системе $CaCO_3(\kappa)=CaO(\kappa)+CO_2(\Gamma)$ введение при той же температуре дополнительного количества CO_2 и $CaCO_3$?
- 2) Температурный коэффициент скорости реакции разложения

- йодоводорода2HI= H_2 + I_2 равен 2. Вычислите константу скорости этой реакции при 674 K, если при 629 K константа скорости равна $8.9 \cdot 10^{-5}$ л·моль⁻¹·с⁻¹.
- 3) Сколько литров 24%-ного раствора гидроксила калия (с плотностью 1,218 г/мл), необходимого для заливки щелочных аккумуляторов, можно приготовить из 2 л 48%-ного раствора едкого калия (с плотностью 1,510 г/мл)?
- 4) Составьте ионно-молекулярные и молекулярные уравнения реакции гидролиза и укажите реакцию растворов солей: хлорида аммония, силиката натрия.
- 5) MnO_2 +HCI = $MnCI_2$ +CI₂ +H₂O. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите ЭДС гальванического элемента и напишите уравнения происходящих реакций, если он составлен из железной и свинцовой пластинок, погруженных в 0,1 М растворы нитратов этих металлов.

- 1) Какие условия будут способствовать большому выходу SO3 по реакции $2SO_2+O_2=2SO_3$?
- 2) Реакция идет по уравнению $4NH_3+5O_2=4NO+6H_2O$. Как изменится скоростьреакции, если увеличить давление в 2 раза?
- 3) Какой объем раствора с массовой долей серной кислоты 60 % (плотность 1,498 г/мл) нужно взять, чтобы приготовить раствор объемом 5 л с массовой долей 12 %(плотность 1,08 г/мл)?
- 4) Составьте ионно-молекулярные и молекулярные уравнения реакции гидролиза и укажите реакцию растворов солей нитрата аммония, хлорида меди (II).
- 5) KI + KIO₃+ $H_2SO_4 = I_2+K_2SO_4+H_2O$. В уравнение окислительновосстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите ЭДС гальванического элемента (-) $Zn/Zn^{2+}//Fe^{3+}/Fe$ (+), если концентрации ионов цинка и железа равны 10^{-2} моль/л.

- 1) Как повлияет на выход хлора в системе $4HCl+O_2=2Cl_2+2H_2O$ повышение температуры в реакционном объеме, уменьшение общего объема смеси, уменьшение концентрации кислорода, увеличение объема реактора, введение катализатора?
- 2) Напишите выражение для скорости химической реакции, протекающей в гомогенной системе по уравнению A+2B=AB₂ и определите, во сколько раз увеличится скорость этой реакции, если концентрация А уменьшится в 2 раза; концентрация В увеличится в 2 раза, концентрация обоих веществ увеличится в 2 раза?
- 3) Какой объем 37 %-ного раствора соляной кислоты (плотность 1,19 г/мл)

потребуется для приготовления 1 л 10 %-ного раствора (плотность 1,049 г/мл)?

- 4) Напишите уравнения реакций гидролиза в молекулярном и ионномолекулярном виде для сульфата алюминия и карбоната калия.
- 5) NaNO₂ + KMnO₄ + H_2SO_4 = NaNO₃ + MnSO₄ + H_2O + K_2SO_4 . В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схему работы гальванического элемента, образованного железом и свинцом, погруженными в 0,005 М растворы их солей. Вычислите ЭДС этого элемента и изменение величины энергии Гиббса.

Вариант 18

- 1) При каких условиях равновесие реакции $4\text{Fe}(\kappa)+3\text{O}_2(\Gamma)=2\text{Fe}_2\text{O}_3(\kappa)$ будетсмещаться в сторону разложения оксида?
- 2) Реакция протекает по уравнению $Na_2S_2O_3+H_2SO_4=Na_2SO_4+H_2SO_3+S$. Как изменится скорость реакции после разбавления реагирующей смеси в 4 раза?
- 3) Какой объем 68%-ного раствора азотной кислоты (плотность 1,4 г/мл) потребуется для приготовления 50 мл 2 н. раствора?
- 4) Составьте уравнения гидролиза солей в молекулярном и ионно-молекулярном виде: силиката калия, сульфата алюминия.
- 5) $K_2Cr_2O_7 + Fe + H_2SO_4 = Cr_2(SO_4)_3 + FeSO_4 + K_2SO_4 + H_2O$. В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Вычислите ЭДС, напишите уравнения электродных процессов для гальванического элемента (-) $Cd/Cd^{2+}//Ag^+/Ag$ (+), если концентрация ионов кадмия и серебра равны 1 моль/л.

- 1) В каком направление сместится равновесие реакции $2\text{CO}+2\text{H}_2=\text{CH}_4+\text{CO}_2$, если концентрация CO и CO₂ увеличить одинаковое число раз?
- 2) Скорость химической реакции $2NO+O_2=2NO_2$ при концентрациях реагирующих веществ $c_{NO}=0,3$ моль/л и $c_{O2}=0,15$ моль/л составил $1,2\cdot 10^{-3}$ моль·л⁻¹·с⁻¹. Вычислите константу скорости реакции.
- 3) Сколько миллилитров 0,1 M раствора серной кислоты потребуется для приготовления 5 л 0,025 M раствора?
- 4) Составьте ионно-молекулярные и молекулярные уравнения реакции гидролиза и укажите реакцию растворов солей: хлорида железа (III), сульфита натрия.
- 5) $H_3AsO_3 + KMnO_4 + H_2SO_4 \rightarrow H_3AsO_4 + MnSO_4 + K_2SO_4 + H_2O$. В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схемы двух гальванических элементов, в одном из которых железо служило бы катодом, а в другом анодом. Напишите уравнения реакций, происходящих при работе этих элементов. Вычислите значения стандартных

ЭДС для этих гальванических элементов.

Вариант 20

- 1) Концентрации каких веществ нужно взять в избытке чтобы сместить равновесие реакции $2SO_2+O_2=2SO_3$ в правую сторону?
- 2) Как изменится скорость реакции $CO+Cl_2=COCl_2$, если объем системы увеличить втрое?
- 3) Какой объем 0,01 н. раствора ортофосфорной кислоты можно приготовить из 1 л 0,5 н раствора?
- 4) Какую реакцию должны иметь растворы солей: ционата натрия, хлорида цинка. Ответ подтвердите соответствующими молекулярными и ионномолекулярными уравнениями.
- 5) $SnSO_4 + KMnO_4 + H_2SO_4 = Sn(SO_4)_2 + MnSO_4 + K_2SO_4 + H_2O$. В уравнение окислительно-восстановительной реакции расставить коэффициенты ионно-электронным методом. Определить окислитель, восстановитель.
- 6) Составьте схему гальванического элемента, в основе которого лежит реакция протекающая по уравнению $Ni+Pb(NO_3)_2=Ni(NO_3)_2+Pb$. Вычислите ЭДС такого гальванического элемента для стандартных условий.

Оценочные материалы для текущего контроля ТКЗ

Вариант 1

- 1) Напишите схему электролиза водного раствора сульфата марганца, если электроды: а) угольные; б) марганцевые.
- 2) В какой последовательности будут выделяться металлы при электролизе раствора, содержащего в одинаковой концентрации сульфаты никеля, серебра, меди?
- 3) При электролизе раствора сульфата хрома (III) током силой 2 А масса катода увеличилась на 4 г. В течение какого времени проводился электролиз? Вариант 2
- 1) Водный раствор содержит смесь катионов: Cu^{2+} , Zn^{2+} , Ag^{+} . В какой последовательности они будут восстанавливаться на катоде?
- 2) Сколько времени потребуется для полного разложения 2 молей воды током силой 2 А?
- 3) При электролизе водного раствора хлорида олова(II) на аноде выделилось 4,48 л хлора (н.у.). Какое вещество и в каком количестве выделилось на катоде?

Вариант 3

1) В какой последовательности будут восстанавливаться катионы при электролизе их смеси следующего состава: Fe^{2+} , Cr^{3+} , Pb^{2+} , Hg^{2+} , Mn^{2+} при одинаковой молярной концентрации соответствующих солей в растворе?

- 2) Какое количество электричества потребуется для выделения из раствора 2 г водорода?
- 3) При электролизе раствора хлорида меди (II) масса катода увеличилась на 3,2 г Что произошло при этом на медном аноде? Какое вещество выделилось и в каком количестве? Напишите схему электролиза.

- 1) Ток силой 20 A в течение 30 мин пропускался через расплав PbCl₂. Вычислите массу выделившегося свинца и объём образовавшегося хлора.
- 2) При электролизе раствора хлорида меди (II) масса катода увеличилась на 3,2 г. Что произошло при этом на медном аноде? Какое вещество выделилось и в каком количестве? Напишите схему электролиза?
- 3) Напишите схему электролиза водного раствора хлорида кальция и схему электролиза расплава хлорида кальция. В каком случае может быть получен металлический кальций?

Вариант 5

- 1) При электролизе соли некоторого металла за 2 часа 24 мин 45 сек при силе тока 8 А на катоде выделилось 6,48 г этого металла. Вычислите молярную массу эквивалента этого металла.
- 2) Электролиз раствора сульфата некоторого металла проводили при силе тока 6 А в течение 45 мин, в результате чего на катоде выделилось 5,49 г металла. Вычислите молярную массу эквивалента металла.
- 3) Опишите процесс атмосферного ржавления железных изделий. Запишите уравнения реакции.

Вариант 6

- 1) Как долго следует пропускать ток силой 2,5 А через расплавленный хлорид свинца для того, чтобы на катоде выделилось 20 г металла?
- 2) Опишите процесс атмосферной коррозии луженного железа при нарушении покрытия.
- 3) Напишите уравнения электродных процессов, протекающих при электролизе водного раствора BaCl₂ с угольными электродами. Что такое поляризация в процессах электролиза? Какие виды поляризации вы знаете и каковы причины их возникновения?

- 1) Через раствор медного купороса пропущен 1 А·ч электричества. Какая масса меди выделится при этом на катоде?
- 2) Опишите процесс атмосферной коррозии оцинкованного железа при нарушении покрытия.
- 3) При электролизе водного раствора SnCl₂ на аноде выделилось 4,43 литра Cl₂ (условия нормальные). Какое вещество и в каком количестве выделилось на катоде? Напишите схему электролиза.

- 1) Чему равна масса алюминия, полученного за один час при электролизе расплава хлорида алюминия током силой 10А?
- 2) . Как протекает атмосферная коррозия железа, покрытого слоем никеля? Опишите анодный и катодный процессы.
- 3) Напишите уравнения электродных процессов, протекающих при электролизе водного раствора FeCl₃ с инертным анодом. Какова последовательность окисления ионов и молекул на аноде при электролизе солей различных типов?

Вариант 9

- 1) Какой силы ток должен быть использован, чтобы выделить из раствора нитрата серебра серебро массой 105 г за 6 мин?
- 2) Анодным или катодным является свинцовое покрытие на железе? Опишите процесс коррозии этого изделия во влажной атмосфере при нарушении покрытия.
- 3) Какой объем кислорода (н.у.) выделится при пропускании тока силой 6 А в течение 30 мин через водный раствор КОН? Напишите схему электролиза водного раствора КОН.

Вариант 10

- 1) Ток силой в 2 А в течение 1 ч. 28 мин выделил на катоде 6,5 г металла. Найдите молярную массу его эквивалента.
- 2) Изделие из железа покрыли кадмием. Анодным или катодным будет это покрытие? Опишите процесс коррозии этого изделия во влажной атмосфере при нарушении покрытия.
- 3) Напишите уравнения электродных процессов, протекающих при электролизе водного раствора Ca(NO₃)₂ с инертными электродами. Какова последовательность восстановления ионов и молекул на катоде при электролизе солей различных типов?

Вариант 11

- 1) При электролизе соли двухвалентного металла ток силой в 1 А в течение 1 ч выделил на катоде 2,219 г металла. Определите, какой это металл.
- 2) Назовите два металла, которые могут служить для железа катодным покрытием. Опишите процесс коррозии во влажной атмосфере при нарушении такого покрытия.
- 3) При какой силе тока можно получить на катоде 0,5 г никеля, подвергая электролизу раствор NiSO₄ в течение 25 мин? Напишите схему процесса электролиза

- 1) При электролизе раствора сульфата меди на аноде выделилось 168 мл кислорода (н.у.). Сколько граммов меди выделилось на катоде?
- 2) Для пищевых консервов применяют посуду из листового железа,

покрытого оловом. Будет ли это покрытие электрохимической защитой при повреждении слоя олова?

3) Какая масса серебра выделится при пропускании тока силой 6 А через раствор нитрата серебра в течение 30 мин? Напишите схему процесса электролиза раствора нитрата серебра.

Вариант 14

- 1) Сколько граммов воды разложилось при электролизе сульфата натрия при силе тока 7 А в течение 5 ч?
- 2) Для пищевых консервов применяют посуду из листового железа, покрытого оловом. Будет ли это покрытие электрохимической защитой при повреждении слоя олова? Дайте мотивированный ответ.
- 3) При прохождении через раствор соли трехвалентного металла тока силой 1,5 А в течение 30 мин на катоде выделилось 1,071 г металла. Определите атомную массу металла.

Вариант 15

- 1) Электролиз раствора сульфата цинка проводился в течение 5 ч, в результате чего выделилось 6 л кислорода (н.у.). Вычислите силу тока.
- 2) Опишите процесс ржавления железа во влажной атмосфере. К какому типу коррозии химической или электрохимической относится этот процесс? Напишите уравнения соответствующих реакций.
- 3) При электролизе водного раствора Cr₂(SO₄)₃ током силой 2 A масса катода увеличилась на 8 г. В течение какого времени проводили электролиз? Напишите схему процесса электролиза.

Вариант 16

- 1) Какие вещества и в каком количестве выделяются на угольных электродах при электроде иодида натрия в течение 2,5 ч, если сила тока равна 6 А?
- 2) Опишите сущность процесса электрохимической коррозии. Почему в инертной атмосфере процесс коррозии протекает значительно медленнее, чем на воздухе?
- 3) Какие реакции протекают на электродах при электролизе раствора сульфата цинка с цинковым анодом?

Вариант 17

- 1) Какие вещества и в каком количестве выделяются на угольных электродах при электролизе водного раствора бромида калия в течение 1 ч 35 мин при силе тока 15 А?
- 2) Катодным или анодным является свинцовое покрытие на железе? Составьте уравнения анодного и катодного процессов коррозии таких изделий при нарушении целостности покрытия во влажном воздухе.

Сколько граммов едкого калия КОН образовалось у катода при электролизе раствора K_2SO_4 если на аноде выделилось 11,2 л кислорода измеренного при

н.у.? Напишите уравнения электродных процессов. Электроды инертные.

Вариант 18

- 1) Чему равна сила тока, если при электролизе раствора хлорида магния в течение 30 мин на катоде выделилось 8,4 л водорода (н.у.). Вычислите массу вещества, выделившегося на аноде. Приведите схему электролиза.
- 2) Объясните сущность процесса коррозии железа, покрытого цинком. Напишите соответствующие уравнения реакций.
- 3) Напишите уравнения процессов, протекающих на кадмиевых электродах, при электролизе водного раствора сернокислого кадмия и рассчитайте выход вещества по току на катоде, если при прохождении через электролит 1 фарадея электричества выделилось 28 г металла.

Вариант 19

- 1) Вычислите силу тока, зная, что при электролизе раствора гидроксида калия в течение 1 ч 15 мин 20 сна аноде выделилось 6,4 г кислорода. Какое вещество и в каком количестве выделилось на катоде?
- 2) Опишите процесс атмосферной коррозии железа, покрытого слоем никеля, при нарушении целостности покрытия. Приведите электронные уравнения анодного и катодного процессов.
- 3) В какой последовательности будут восстанавливаться катионы при электролизе их смеси следующего состава: Fe^{2+} , Cr^{3+} , Pb^{2+} , Hg^{2+} , Mn^{2+} при одинаковой молярной концентрации соответствующих солей в растворе?

Вариант 20

- 1) При электролизе раствора хлорида двухвалентного металла на аноде выделилось 560 мл газа (н.у.), а на катоде за это же время 1,6 г металла. Какой это металл?
- 2) Железное изделие покрыли кадмием. Анодным или катодным является это покрытие? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия во влажном воздухе и в соляной кислоте.
- 3) В какой последовательности будут выделяться металлы при электролизе раствора, содержащего в одинаковой концентрации сульфаты цинка, хрома, никеля?

Отчет по лабораторной работе

Лабораторная работа № 1. Правила по технике безопасности в химической лаборатории

Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) правила поведения в химической лаборатории;
- в) правила противопожарной безопасности;
- г) правила поведения при несчастных случаях;

- д) перечень, описание и рисунок мерной химической посуды;
- е) выводы.

Лабораторная работа № 2. Основные понятия и законы стехиометрии. Определение молярной массы эквивалента металла

Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткие теоретические положения;
- г) ход работы: краткое описание методики определения эквивалента металла;
- д) рисунок прибора, используемого для определения эквивалента металла;
- е) данные опыта:
- ж) расчет опытной молярной массы эквивалента металла на основе закона эквивалентов, ошибки опыта абсолютной и относительной;
- е) выводы.

Лабораторная работы № 3. Определение тепловых эффектов химических реакций

Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткое теоретическое введение по теме;
- г) рисунок упрощенного калориметра
- в) порядок выполнения работы;
- г) данные опыта и на их основе расчет теплового эффекта реакции нейтрализации;
- д) выводы.

Лабораторная работа № 4. Химическая кинетика. Влияние концентрации на скорость химической реакции

Отчет о работе должен включать:

- а) название выполняемой работы, цель,
- б) перечисление оборудования и реактивов,
- в) краткое описание методики проведения опыта;
- е) кривые зависимости скорости реакции от концентрации тиосульфата натрия
- е) написать уравнение реакции и математическое выражение закона действующих масс для изученных химических систем;
- ж) вывод о зависимости скорости реакции от концентрации реагирующих веществ.

Пабораторная работа № 5. Способы выражения состава растворов. Приготовление растворов заданной концентрации из более концентрированного раствора»

Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткую методику выполнения опыта;
- Γ) расчеты объема концентрированного раствора соли (V), необходимого для приготовления раствора заданной концентрации; пересчета массовой доли приготовленного раствора в молярную концентрацию, нормальность, моляльность и титр;
- д) выводы.

Лабораторная работа № 6. Кислотно-основное и комплексонометрическое титрование. Определение общей жесткости воды Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткие теоретические сведения по теме работы;
- г) порядок и ход выполнения лабораторной работы;
- д) уравнения химических реакций, расчеты, объяснение полученных результатов;
- е) выводы.

Лабораторная работа № 7. Измерение ЭДС гальванического элемента Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткие теоретические положения, а именно следующие определения: гальванический элемент, запись уравнения Нернста с пояснениями его составляющих, электроды в гальваническом элементе (катод, анод), электродвижущая сила;
- г) порядок и методику выполнения опыта;
- д) уравнения электродных и токообразующей реакций, расчет ЭДС гальванического элемента, определение ΔG в окислительновосстановительной реакции;
- е) схему работы изученного гальванического элемента;
- ж) выводы.

Лабораторная работа № 8. Коррозия металлов Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткие сведения по теоретическим положениям работы;
- г) порядок выполнения работы;
- д) схемы коррозии железа, цинка с водородной деполяризацией, схемы работы коррозионных элементов при нарушении катодных и анодных покрытий;
- е) схему коррозии железа с кислородной деполяризацией;
- ж) выводы.

Для промежуточной аттестации:

- 1. Закон эквивалентов. Эквивалент. Молярная масса эквивалентов простых и сложных веществ. При восстановлении 5,1 г оксида металла (III) образовалось 2,7 г воды. Определить молярную массу эквивалента оксида и молярную массу металла, если молярная масса эквивалента воды равна 9 г/моль.
- 2. Периодический закон и периодическая система химических элементов Д.И.Менделеева. Семейства элементов (s, p,d, f-элементы). В ядре атома содержится 17 протонов. Определите элемент, его место в таблице Д.И.Менделеева (период, группа, подгруппа). Назовите для него элементы, являющиеся электронными аналогами, запишите их сокращенные формулы.
- 3. Строение многоэлектронных атомов элементов, правила и принципы распределения электронов (принцип минимальной энергии, принцип Паули, правила Клечковского). Напишите электронную формулу атома хлора. Укажите число протонов и нейтронов в ядре атома хлора. Назовите его электронные аналоги.
- 4. Химическая связь. Виды и количественные характеристики химической связи. Определите тип химической связи в молекулах: NaCl, N_2 , H_2O , CCl_4 , K_2O , H_2 , Al.
- 6. Ковалентная связь. Метод валентных связей. Валентные возможности атомов по обменному и донорно-акцепторному механизму. Напишите электронные формулы атомов магния и серы; ионов Mg^{2+} , S^{2-} .
- 7. Водородная связь. Влияние водородных связей на свойства веществ. Взаимодействие между молекулами (Ван-дер-ваальсовы силы). Электронная формула имеет окончание $...3d^{10}4s^1$, определите элемент и напишите полную электронную формулу.
- 8. Ионная связь, механизм образования, свойства. Приведите электронные формулы элементов кальция, железа, брома. Укажите

валентные электроны, семейство элементов. Определите значения квантовых чисел для $3d^2$ электрона атома железа.

- 9. Комплексные соединения. Координационная теория А. Вернера. Напишите уравнения электролитической диссоциации и выражение констант нестойкости полученных ионов: $K_2[Co(CN)_6]$, $[Ag(NH_3)_2]NO_3$. Назовите комплексные соединения, координационное число, степенб окисления комплексообразователя.
- 10. Растворы, способы выражения концентрации растворов (моляльность, мольная доля, массовая доля). Сколько граммов сульфата натрия необходимо для приготовления 800 г 20 % раствора
- 11. Растворы, способы выражения концентраций растворов (молярность, мольная доля). Вычислите молярную концентрацию 20%-ного раствора хлорида кальция, плотность которого 1,178 г/мл.
- 12. Ионное произведение воды. Водородный показатель среды (рН). Рассчитайте рН раствора содержащего 4,9 г серной кислоты в 1 л раствора.
- 13. Ионное произведение воды. Водородный (pH) и гидроксильный (pOH) показатели. Определите pOH раствора, если концентрация H^+ равна 10^{-4} моль/л.
- 14. Осмос. Закон Вант-Гоффа. Чему равно осмотическое давление раствора глюкозы при 17 0 C, в котором её массовая доля составляет 10 % (плотность раствора 1,037 г/мл)?
- 15. Термохимические уравнения. Энтальпия (теплота) образования химических соединений. Рассчитайте $\Delta_{\rm f} H^0_{\ 298}$ образования серной кислоты по реакции:

$$2H_2O(ж) + 2SO_2(\Gamma) + O_2(\Gamma) = 2H_2SO_4(ж)$$
, если $\Delta H^0_{xp} = -462$ кДж.

16. Второй закон термодинамики. Установите самопроизвольное протекание, каких химических процессов возможно в стандартных условиях:

$$FeO(T) + C(графит) \rightarrow Fe(T) + CO_2(г);$$

FeO(T) +
$$H_2(\Gamma) \rightarrow Fe(T) + H_2O(x)$$
.

17. Термохимические расчёты. Закон Гесса. Энергия химической связи. Рассчитайте ΔH^0_{298} , ΔS^0_{298} , ΔG^0_{298} химической реакции, протекающей по схеме:

$$CO(\Gamma) + H_2O(\Gamma) = H_2(\Gamma) + CO_2(\Gamma).$$

- 18. Направленность химических реакций. Энергия Гиббса и энергия Гельмгольца. Установите, какие из приведенных реакций протекают самопроизвольно и являются экзотермическими:
 - a) $2H_2O_{2(x)} = 2H_2O_{(x)} + O_{2(r)}$;
 - 6) $3H_{2(r)} + N_{2(r)} = 2NH_{3(r)}$.
- 19. Химическое равновесие. Закон действующих масс. Написать выражение констант равновесия для системы:

$$CO_{ras} + H_2O_{ras} = CO_{2ras} + H_{2ras}; \Delta H_{xp}^0 < 0.$$

Укажите направление смещения равновесия при повышении температуры и увеличении давления.

20. Принцип Ле Шателье. Влияние температуры, общего давления, концентраций компонентов системы на характер смещения равновесия. Написать выражение констант равновесия для системы:

$$N_2O_{4 (ra3)} = 2 NO_{2 (ra3)}, \Delta H^0_{xp} > 0.$$

Укажите направление смещения равновесия при повышении температуры и увеличении давления.

21. Химическая кинетика. Скорость химической реакции, факторы, влияющие на скорость реакции. Катализ: гомогенный, гетерогенный.

Во сколько раз увеличиться скорость реакции при увеличении температуры с 550 0 C до 590 0 C, если температурный коэффициент γ равен 3.

22. Энергетика химических процессов. Внутренняя энергия и энтальпия системы. Первый закон термодинамики. Составьте термохимическое уравнение для схемы:

$$Mg(\kappa) + CO_2(\Gamma) = MgO(\kappa) + C$$
 (графит).

- 23. Электрохимические процессы и системы. Двойной электрический слой. Ряд напряжений металлов. Подберите коэффициенты в схеме окислительно-восстановительной реакции методом ионно-электронного баланса: $H_2SO_3 + Cl_2 + H_2O \longrightarrow H_2SO_4 + HCl$.
- 24. Электрохимические процессы и системы. Двойной электрический слой. Ряд напряжений металлов. Подберите коэффициенты в схеме окислительно-восстановительной реакции методом ионно-электронного баланса:

$$KMnO_4 + FeSO_4 + H_2SO_4 \longrightarrow MnSO_4 + Fe_2(SO_4)_3 + K_2SO_4 + H_2O.$$

- 25. Электродные потенциалы и электродвижущие силы. Уравнение Нернста. Составить схему работы гальванического элемента, составленного из пластин меди и серебра. Рассчитайте стандартную ЭДС гальванического элемента по известным значениям стандартных потенциалов электродов.
- 26. Электродные потенциалы и электродвижущие силы. Уравнение Нернста. Рассчитайте ЭДС элемента $Fe|Fe^{2+}||Pb^{2+}||Pb$, при температуре 298 К и активности ионов Fe^{2+} и Pb^{2+} , равных соответственно 0,1 и 0,01 моль/л.
- 27. Электродные потенциалы и электродвижущие силы. Уравнение Нернста. Составить схему работы гальванического элемента, составленного из пластин цинка и свинца. Рассчитайте стандартную ЭДС гальванического элемента по известным значениям стандартных потенциалов электродов.
- 28. Электрохимические процессы. Уравнение Нернста. Гальванические элементы. Определите ЭДС концентрационного марганцевого элемента с активностями ионов марганца, равными 10^{-2} моль/л у одного электрода и 10^{-3} моль/л у другого при 298 К.

- 29. Электролиз. Законы электролиза. Составьте уравнения реакций, протекающих на электродах при электролизе водного раствора $NiCl_2$ с инертными электродами. Вычислите массу выделившегося металла, если через раствор пропускали ток силой 20 A в течение 30 минут.
- 30. Электролиз. Законы электролиза. Составьте уравнения реакций, протекающих на электродах при электролизе водного раствора K_2SO_4 с инертными электродами.
- 31. Электролиз. Законы электролиза. Составьте уравнения реакций, протекающих на электродах при электролизе водного раствора $ZnCl_2$ с инертными электродами. Вычислите массу выделившегося металла, если через раствор пропускали ток силой 25 A в течение 20 минут.
- 32. Электролиз. Законы электролиза. Составьте уравнения реакций, протекающих на электродах при электролизе водного раствора $Cu(NO_3)_2$ с инертными электродами.
- 33. Коррозия металлов. На какие виды подразделяются коррозионные процессы? Охарактеризуйте методы защиты от коррозии. Назовите два металла, которые могут служить катодным и анодным покрытием для железа. Выбор подтвердите значениями стандартных электродных потенциалов.
- 34. Классификация коррозионных процессов. В чём сущность химической коррозии?. Опишите процесс коррозии железа в кислой среде при нарушении защитного покрытия.
- 35. Коррозия металлов. В чём сущность электрохимической коррозии? Назовите два металла, которые могут служить катодным и анодным покрытием для олова. Выбор подтвердите значениями стандартных электродных потенциалов.