Аннотация к рабочей программе дисциплины Б1.В.08Тепломассообмен

Направление подготовки: 16.03.01 Техническая физика

Направленность (профиль): теплофизика **Квалификация выпускника:** бакалавр

Цель освоения дисциплины: изучение физических закономерностей и особенностей процессов тепломассообмена, а также методов решения типовых задач в практических приложениях.

Объем дисциплины: 9 ЗЕ, 324 часа.

Семестры: 5, 6

Краткое содержание основных разделов дисциплины:

№ п/п раздела	Основные разделы дисциплины	Краткое содержание разделов дисциплины
1	Введение. Основные положения учения о теплообмене.	Цели и содержание учения о теплообмене. Основные понятия. Температурное поле, изотермы, градиент температуры. Плотность теплового потока, закон Фурье, коэффициент теплопроводности, его свойства.
2	Математическая постановка задач теплопроводности.	Механизм теплопроводности. Дифференциальное уравнение теплопроводности. Частные случаи уравнения. Условия однозначности, их назначение. Граничные условия, их виды.
3	Стационарная теплопроводность в стенках	Температурное поле в плоской стенке. Теплопроводность и теплопередача через многослойную стенку. Коэффициент теплопередачи. Температурное поле в цилиндрической стенке. Линейная плотность теплового потока. Теплопередача черезцилиндрические стенки. Критический диаметр изоляции цилиндрической стенки.
4	Задачи нестационарной теплопроводности	Особенности нестационарных процессов теплопроводности. Число Био. Стадии охлаждения произвольных тел. Закон регулярного режима; темп охлаждения. Внешние задачи
5	Математическая постановка задач конвективного теплообмена. Основы теории подобия.	Теплоотдача, уравнение Ньютона, коэффициент теплоотдачи. Теплофизические характеристики жидкостей. Система уравнений конвективного теплообмена, математическая постановка задач, условия однозначности, примеры. Безразмерная форма постановки. Числа подобия в конвективном теплообмене и их смысл. Уравнения

		подобия. Условия подобия.
6	Основы теории пограничного слоя	Картина обтекания пластины при различных числах Рейнольдса. Динамический и тепловой пограничные слои. Уравнения Прандтля для погранслоя. Тепловой поток и трение на стенке. Профили скорости и температуры в ламинарном погранслое, расчет теплоотдачи пластины. Турбулентное течение и перенос. Уравнения турбулентного погранслоя. Аналогия Рейнольдса. Теплоотдача пластины при турбулентном погранслое. Влияние переменности свойств на теплообмен и его учёт в уравнениях подобия.
7	Теплообмен при вынужденном движении жидкости в каналах и трубах и при поперечном обтекании труб и пучков труб	Общая картина теплообмена в трубах. Особенности гидродинамики. Режимы течения. Расчет гидросопротивления. Особенности теплообмена. Локальная теплоотдача на ламинарном режиме. Среднелогарифмический температурный напор. Уравнения для расчета теплоотдачи в трубе на турбулентном режиме. Вязкостный и вязкостно-гравитационный режимы. Теплоотдача в трубах некруглого сечения и в шероховатых трубах. Поперечное обтекание одиночной трубы: общая картина, особенности гидродинамики и теплоотдачи. Уравнения подобия для теплоотдачи. Поперечное обтекание пучков труб: общая картина, особенности гидродинамики и теплоотдачи. Структура уравнений подобия.
8	Теплоотдача при свободной конвекции	Картина процесса. Уравнения движения. Числа Грасгофа и Релея. Свободная конвекция в неограниченном пространстве: основные схемы, особенности гидродинамики и теплообмена, расчет теплоотдачи на ламинарном и турбулентном режимах. Свободная конвекция в замкнутом объеме жидкости. Основные схемы. Метод эквивалентной теплопроводности.
9	Теплообмен в двухфазных средах: кипение, конденсация	Свойства пузырьков пара. Кипение в большом объеме: общая картина и основные особенности. Температурная кривая. Режимы кипения, критические тепловые нагрузки. Расчет парообразования и теплообмена при пузырьковом кипении. Кипение при вынужденном движении жидкости в трубах. Конденсация пара, ее виды. Картина пленочной конденсации на вертикальной стенке. Вид расчетных формул. Интенсификация теплообмена в конденсаторах. Расчет теплообмена.
10	Основные понятия и законы лучистого теплообмена	Характеристики радиационного теплообмена. Законы Планка, Вина, Стефана-Больцмана, Кирхгофа, Ламберта.

1	1	Лучистый теплообмен между	Радиационный теплообмен между телами,
		телами	разделенными прозрачной средой: плоские стенки,
			концентрические цилиндры или сферы, стенки с
			экранами Излучение и поглощение газов -
			основные понятия и закономерности.

Форма промежуточной аттестации: зачет в 5-м семестре/экзамен в 6-м семестре.