МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

учреждение высшего образованиях кгэу «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

«УТВЕРЖДАЮ»

Директор института Теплоэнергетики Чичирова Н.Д.

«28 » <u>отктября</u> 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теоретические основы теплотехники

(Наименование дисциплины в соответствии с РУП)

Направление подготоки

16.03.01 Техническая физика

(Код и наименование направления подготовки)

Направленность(и) (профиль(и)) Теплофизика

(Наименование направленности (профиля) образовательной программы)

Квалификация

бакалавр (Бакалавр / Магистр)

г. Казань, 2020

Рабочая программа дисциплины разработана в соответствии с ФГОС ВО - бакалавриат по направлению подготовки 16.03.01 Техническая физика (приказ Минобрнауки России от 12.03.2015 г. № 204)

Программу разра	ботал(и):		
доцент,к.т.н.		Попкова О.С.	26.10.2020

Программа рассмотрена и одобрена на заседании кафедры-разработчика Теоретические основы теплотехники, протокол №219 от 06.10.2020 Зав. кафедрой Дмитриев А.В.

Программа рассмотрена и одобрена на заседании выпускающей кафедры Теоретические основы теплотехники, протокол №219 от 06.10.2020 Зав. кафедрой Дмитриев А.В.

Программа одобрена на заседании учебно-методического совета института Теплоэнергетики, протокол № 07/20 от 27.10.2020

Зам. директора института Теплоэнергетики

Программа принята решением Ученого совета института Теплоэнергетики протокол № 7/20 от 27.10.2020

1. Цель, задачи и планируемые результаты обучения по дисциплине

Целью освоения дисциплины "Теоретические основы теплотехники" является изучение теоретических методов расчета движения жидкости и газа в элементах энергетического и теплотехнологического оборудования, процессов преобразования энергии в турбомашинах, термодинамических свойств рабочих тел и теплоносителей, используемых в теплоэнергетике, фундаментальных законов термодинамики, термодинамических процессов и циклов преобразования энергии, протекающих в теплотехнических установках, основных физических моделей переноса теплоты и массы в неподвижных и движущихся средах, методов расчета по -токов теплоты и массы, полей температуры и концентрации компонентов смесей, базирующихся на этих моделях.

Задачами дисциплины являются:

- -приобретение навыков использования основных уравнений гидрогазодинамики для расчета течений,
- -выработка умений экспериментального исследования и анализа характеристик теплоэнергетического оборудования и турбомашин,
- овладение основными понятиями технической термодинамики, терминологией, законами, основными процессами, протекающими в тепловых машинах, методами расчета и экспериментального определения свойств рабочих тел и теплоносителей,
 - -ознакомление со способами переноса теплоты (массы),
- развитие способности обучаемых к физическому и математическому моделированию процессов переноса теплоты (массы), протекающих в реальных физических объектах, в частности, в установках энергетики и промышленности.

Компетенции, формируемые у обучающихся, запланированные результаты обучения по дисциплине, соотнесенные с дескрипторами достижения компетенций:

Код и наименование компетенции	Запланированные результаты обучения			
	по дисциплине (знать, уметь, владеть)			
	31(ОПК-1) знать основные физические свой-			
	ства жидкостей и газов, общие законы и			
	уравнения статики, кинематики и динамики			
	жидкостей и газов, особенности физического			
	и математического моделирования одномер-			
ОПК-1	ных и трехмерных, дозвуковых и сверхзву-			
способностью использовать фундаменталь-	ковых, ламинарных и турбулентных течений			
ные законы природы и основные законы ес-	идеальной и реальной несжимаемой и сжи-			
тественнонаучных дисциплин в профессио-	маемой			
нальной деятельности	32(ОПК-1) знать законы сохранения и пре-			
	вращения энергии применительно к систе-			
	мам передачи и трансформации теплоты, ка-			
	лорические и переносные свойства веществ			
	применительно к рабочим телам тепловых			
	машин и теплоносителям,			

33(ОПК-1) знать законы и основные физикоматематические модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам У1(ОПК-2) уметь рассчитывать гидродинамические параметры потока жидкости (газа) при внешнем обтекании тел и течении в каналах (трубах), проточных частях гидрогазодинамических машин; проводить гидравлический расчет трубопроводов; У2(ОПК-2) уметь проводить термодинамиче-ОПК-2 способностью применять методы математиский анализ циклов тепловых машин с целью ческого анализа, моделирования, оптимизаоптимизации их рабочих характеристик и ции и статистики для решения задач, вознимаксимизации КПД кающих в ходе профессиональной деятель-У3(ОПК-2) уметь рассчитывать температурные поля (поля концентраций веществ) в потоках технологических жидкостей и газов, В1 (ОПК-2) владеть методиками проведения типовых гидродинамических расчетов гидромеханического оборудования и трубопроводов. 31(ОПК-3) знать динамические процессы и циклы преобразования энергии, протекающие в теплотехнических установках 32(ОПК-3) знать законы и основные физикоматематические модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам У1(ОПК-3) уметь проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и ОПК-3 максимизации КПД способностью к теоретическим и экспери-У2(ОПК-3) уметь рассчитывать температурментальным исследованиям в избранной обные поля (поля концентраций веществ) в ласти технической физики, готовностью учиэлементах конструкции тепловых и теплотывать современные тенденции развития технологических установок с целью интентехнической физики в своей профессиональсификации процессов тепломассообмена, ной деятельности обеспечения нормального температурного режима работы элементов оборудования и минимизации потерь теплоты; рассчитывать передаваемые тепловые потоки В1 (ОПК-3) владеть основами термодинамического анализа рабочих процессов в тепловых машинах, определения параметров их работы, тепловой эффективности В2 (ОПК-3) владеть основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехнологического

2. Место дисциплины в структуре ОПОП

Дисциплина «Теоретические основы теплотехники» относится к обязательной части учебного плана по направлению подготовки 16.03.01 Техническая физика.

Для освоения дисциплины обучающийся должен:

знать: теоретические основы о составе, свойствах и строении веществ, основные физические законы;

владеть: математическими методами дифференцирования и интегрирования функций, основами математического моделирования, основными методами теоретического и экспериментального исследования.

3. Структура и содержание дисциплины

3.1. Структура дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц (3E), всего 216 часов, из которых 93 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа 34 час., занятия семинарского типа (практические занятия) 34 час., лабораторные занятия — 20 час., групповые и индивидуальные консультации 1 час., прием экзамена — 35, КПА - 1, самостоятельная работа обучающегося 88 час. Практическая подготовка по виду профессиональной деятельности составляет 4 часа.

Вид учебной работы	Всего ЗЕ	Всего часов	Се- местр
ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ	3	216	3
КОНТАКТНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ С ПРЕПОДАВАТЕЛЕМ, в том числе:		93	93
Лекции (Лек)		34	34
Практические (семинарские) занятия (Пр)		34	34
Лабораторные работы (Лаб)		20	20
Групповые консультации		2	2
Контроль самостоятельной работы и иная контактная работа (КСР)		2	2
Индивидуальные консультации			
Сдача экзамена (КПА)		1	1
САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩЕГОСЯ (СРС), в том числе:		88	88
Подготовка к промежуточной аттестации в форме: экзамена		35	35

ФОРМА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (За – зачет, ЗО – зачет с оценкой, Э – экзамен)	Э	Э
--	---	---

3.2. Содержание дисциплины, структурированное по разделам и видам занятий

			Распределение трудоемкости (в часах) по видам учебной работы, включая СРС						/чения ()		В	тации	аллов стеме	
Разделы дисциплины	Семестр	Занятия лекционного типа	Занятия практического / семинарского типа	Лабораторные работы	Групповые консультации	Самостоятельная работа студента, в т.ч.	Подготовка к промежуточной аттестации	Сдача экзамена	Итого	Формируемые результаты обучения (знания, умения, навыки)	Литература	Формы текущего контроля успеваемости	Формы промежуточной аттестации	Максимальное количество баллов по балльно - рейтинговой системе
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Гидрогазоди- намика Техническая термодина- мика	3	16	16	8		44				31 (ОПК-1) У1 (ОПК-2) В1 (ОПК-2) 32 (ОПК-1) У2 (ОПК-2)	3	РЗ Те ст ЛР РЗ Те ст ЛР	Э	30
	2	10	10	0		22				31 (ОПК-3) У1 (ОПК-3) В1 (ОПК-3)			2	1.5
Основы теп-лообмена	3	10	10	8		22				33 (OПК-1) У3 (ОПК-2) 32 (ОПК-3) У2 (ОПК-3) B2 (ОПК-3)	1	РЗ Те ст ЛР	Э	15
Экзамен	3				2		35	1						40
ИТОГО		34	34		2	18	35	1						100

4. Образовательные технологии

При проведении учебных занятий используются традиционные образовательные технологии самостоятельное изучение определённых разделов и современные образовательные технологии, направленные на обеспечение развития у

обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств: проблемное обучение, анализ ситуаций и имитационных моделей, работа в команде, обучение на основе опыта.

При реализации дисциплины «Теоретические основы теплотехники» по образовательной программе «Теплофизика» направления подготовки бакалавров 16.03.01 «Техническая физика» применяются электронное обучение и дистанционные образовательные технологии.

В образовательном процессе используются:

- дистанционные курсы (ДК), размещенные на площадке LMS Moodle, URL: http://lms.kgeu.ru/course/view.php?id=2592
- электронные образовательные ресурсы (ЭОР), размещенные в личных кабинетах студентов Электронного университета КГЭУ, URL: http://e.kgeu.ru/

5. Оценивание результатов обучения

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля успеваемости, проводимого по балльно-рейтинговой системе (БРС), и промежуточной аттестации.

Текущий контроль успеваемости осуществляется в течение семестра, включает: проведение тестирования (письменное или компьютерное), контроль самостоятельной работы обучающихся (в письменной или устной форме).

Итоговой оценкой результатов освоения дисциплины является оценка, выставленная во время промежуточной аттестации обучающегося (экзамен) с учетом результатов текущего контроля успеваемости. Промежуточная аттестация в форме экзамена проводится письменно или устно по билетам. На экзамен выносятся теоретические и практические задания, проработанные в течение семестра на учебных занятиях и в процессе самостоятельной работы обучающихся. Экзаменационные билеты содержат 2 теоретических задания и 1 задание практического характера.

Обобщенные критерии и шкала оценивания уровня сформированности компетенции (дескрипторы достижения компетенции) по итогам освоения дисциплины:

Плани-	Обобщенные критерии и шкала оценивания результатов обучения						
руемые резуль-	неудовлетво- удовлетворительно		хорошо	отлично			
таты обу- чения	не зачтено		зачтено				
Полнота знаний	Уровень знаний ниже минималь- ных требований, имеют место грубые ошибки	V 1	Уровень знаний в объеме, соответствующем программе, имеет место несколько негрубых ошибок	Уровень знаний в объеме, соответ-ствующем программе подготовки, без ошибок			

Наличие умений	При решении стандартных задач не продемонстрированы основные умения, имеют место грубые ошибки	Продемонстрированы основные умения, решены типовые задачи с негрубыми ошибками, выполнены все задания, но не в полном объеме	Продемонстрированы все основные умения, решены все основные задачи с негрубыми ошибками, выполнены все задания в полном объеме, но некоторые с недочетами	Продемонстрированы все основные умения, решены все основные задачи с отдельными несущественными недочетами, выполнены все задания в полном объеме
Наличие навыков (владение опытом)	задач не проде- монстрированы базовые навыки, имеют место ньш наоор навыков для решения стан- дартных задач с не- которыми недочета-		Продемонстрированы базовые навыки при решении стандарт- ных задач с некоторыми недочетами	Продемонстриро- ваны навыки при решении нестан- дартных задач без ошибок и недочетов
Характеристика сформированности компетенции (дескриптора достижения компетенции)	грубые ошибки		Сформированность компетенции в целом соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в целом достаточно для решения стандартных практических (профессиональных) задач	Сформированность компетенции полностью соответствует требованиям. Имеющихся знаний, умений, навыков и мотивации в полной мере достаточно для решения сложных практических (профессиональных) задач
Уровень сформированности компетенции (дескриптора-достижения компетенции)	Низкий	Ниже среднего	Средний	Высокий

Шкала оценки результатов обучения по дисциплине:

		Уровень сформированности компетенции					
		(дескр	ипторы достиж	кения компетен	ции)		
Код	Заплани- рованные	Высокий	Средний	Ниже среднего	Низкий		
компе-	дескрипторы	Шкала оценивания					
тенции	освоения дисциплины	отлично	хорошо	удовлет- ворительно	неудов- летвори-тельно		
			не зачтено				

	DIJOTY :				
	знать:				
	знать основные				
	физические свойства жид-				
	костей и газов,				
	общие законы		знает основ-		
	и уравнения		ные физиче-		
	статики, кине-		ские свойст-		
	матики и дина-	знает основ-	ва жидко-	плохо знает	
	мики жидко-	ные физиче-	стей и газов,	основные	
	стей и газов,	ские свойства	общие зако-	физические	уровень
	особенности	жидкостей и	ны и урав-	свойства	знаний ни-
	физического и	газов, общие	нения стати-	жидкостей и	же мини-
	математиче-	законы и	ки, кинема-	газов, общие	мального
	ского модели-	уравнения статики, ки-	тики и ди- намики	законы и уравнения	требования,
	рования одно-	нематики и	жидкостей и	статики, ки-	допускает
	мерных и	динамики	газов, при	нематики и	грубые
	трехмерных,	жидкостей и	ответе мо-	динамики	ошибки
	дозвуковых и	газов без	жет допус-	жидкостей и	
	сверхзвуковых,	ошибок	тить не-	газов	
	ламинарных и турбулентных		сколько не-		
	течений иде-		грубых		
	альной и ре-		ошибок		
	альной несжи-				
OHIC 1	маемой и сжи-				
ОПК-1	маемой				
	знать:				
		знает законы	знает законы	плохо знает	
		сохранения и	сохранения	законы со-	
		превращения	и превраще-	хранения и	
	знать законы	энергии при-	ния энергии		
	сохранения и	менительн о к	примени-	ния энергии	
	превращения	системам пе-	тельн о к	примени-	
	энергии при-	редачи и трансформа-	системам	тельн о к	
	менительно к	трансформа-	передачи и трансфор-	передачи и	уровень
	системам пере-	калорические	маци и теп-	трансфор-	знаний ни-
	дачи и транс-	и переносные	лоты, кало-	маци и теп-	же мини-
	формации теп-	свойства ве-	рические и	лоты, кало-	мального
	лоты, калори-	ществ приме-	переносные	рические и	требования,
	ческие и пере-	нительн о к	свойства	переносные	допускает
	носные свойства ва веществ	рабочим те-	веществ	свойства	грубые
	применительно	лам тепловых	примени-	веществ	ошибки
	к рабочим те-	машин и теп-	тельн о к ра-	примени-	
	лам тепловых	лоносителя м,	бочим телам	тельн о к ра-	
	машин и теп-	динамиче-	тепловых	бочим телам	
	лоносителям	ские процес-	машин и те-	тепловых	
		сы и циклы	плоносителя	машин и те-	
		преобразова-	м, динами-	плоносителя	
		IIII d bilentiiii	HACKIA HAC	м пипоми	
		ни я энергии, протекающие	ческие про-	м, динами-	

	OXYOUN	в тепло- тех- нических ус- тановках без ошибок	циклы преобразовани я энергии, протекающие в теплотехнических установках, при ответе может допустить несколько негрубых ошибок	цессы и циклы пре- образовани я энергии, протекающие в тепло- технических установках	
	знать: знать законы и основные физико- математиче- ские модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам	знает законы и основные физико- математически е модели переноса теплоты и массы применительн о к теплотехничес ким и теплотехнолог ическим установкам и системам без ошибок	знает законы и основные физико- математически е модели переноса теплоты и массы применительн о к теплотехничес ким и теплотехнолог ичеким установкам и системам, при ответе может допустить несколько негрубых ошибок	плохо знает законы и основные физико- математически е модели переноса теплоты и массы применительн о к теплотехничес ким и теплотехничес ким и теплотехнолог ическим установкам и системам	уровень знаний ни-же мини-мального требования, допускает грубые ошибки
ОПК-2	уметь: уметь рассчитывать гидродинамические параметры потока жидкости (газа) при внешнем обтекании тел и течении в каналах (трубах), проточных частях гидрогазодинамических машин; проводить гидравлический расчет	уметь рас- считывать гидродина- мич еские па- раметры по- тока жидко- сти (газа) при внешнем об- текании тел и течении в ка- налах (тру- бах), проточ- ных частях гидрогазоди- на мических машин; про-	демонстрирует умение рассчитывать гидродинамич еские параметры потока жидкости (газа) при внешнем обтекании тели течении в каналах (трубах), проточных частях гид-	в целом де- монстрирует умение рас- считывать гидродина- мич еские параметры потока жид- кости (газа) при внеш- нем обтека- нии тел и течении в каналах (трубах), проточных	при решении типовых задач не демонстрирует сформированн ое умение расситывать гидродинамич еские параметры потока жидкости (газа) при внешнем

трубопроводо	в водить гид- равлически й расчет трубо- проводов	рогазодина мических машин; проводить гидравлический расчет трубопроводов , допускает при этом ряд небольших ошибок	частях гид- рогазодина мических машин; про- водить гид- равлически й расчет трубопрово- дов Зада- ния выпол- нены не в полном объ- еме	обтекании тел и течении в каналах (трубах), проточных частях гидрогазодина мических машин; проводить гидравлически й расчет трубопроводов , допускает грубые ошибки
уметь:		1	l	JIIIIOKII
уметь проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД	мич ескии анализ цик- лов тепловых машин с це- лью оптими- зации их ра- бочих харак-	демонстрирует умение проводить термодинамич еский анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД, допускает при этом ряд небольших ошибок	в целом демонстрирует умение проводить термодинамич еский анализ циклов тепловых манин с целью оптимизации их рабочих характеристик и максимизации КПД задания выполнены не в полном объеме	при решении задач не демонстрирует умение проводить термодинамич еский анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД; допускает грубые ошибки
уметь:	1			
уметь рассчитывать температурные поля (поля концентраций веществ) в потоках технологи ческих жидкостей и газов	рассчитывать температур- ные поля в потоках технологическ их жилкостей	демонстрирует умение рассчитывать температурные поля в потоках технологическ их жидкостей и газов, до-	в целом демонстрирует умение рассчитывать температурные поля в потоках технологическ их жидкостей и газов,	при решении задач не демонстрирует умение рассчитывать температурные поля в потоках техно-

	риолети.	ошибок	пускает при этом ряд не- больших ошибок	,задания вы- полнены не в полном объеме	логическ их жидкостей и газов; до- пускает грубые ошибки
	владеть: владеть методиками проведения типовых гидродинамических расчетов гидромеханического оборудования и трубопроводов	продемонстрир ованы навыки проведения типовых гидродинамич еских расчетов гидромеханиче ского оборудования и трубопроводов, без ошибок и недочетов	продемонстрир ованы базовые навыки проведения типовых гидродинамич еских расчетов гидромеханиче ского оборудования и трубопроводов , допущен ряд мелких ошибок	имеется минимальный набор навыков для решения стандартных задач, много ошибок	не проде- монстрир ованы базо- вые навыки, допущены грубые ошибки
ОПК-3	знать: знать динамические процессы и циклы преобразования энергии, протекающие в теплотехнических установках	знает дина- мические процессы и циклы преоб- разования энергии, про- текающие в теплотехни- ческих уста- новках без ошибок	знает дина- мические процессы и циклы пре- образования энергии, протекаю- щие в тепло- технических установках, при ответе может до- пустить не- сколько не- грубых ошибок	плохо знает динамиче- ские процес- сы и циклы преобразо- вания энер- гии, проте- кающие в теплотехни- ческих уста- новках	уровень знаний ни-же мини-мального требования, допускает грубые ошибки
	знать: знать законы и основные физико- математиче- ские модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установ-	знает законы и основные физико- математиче- ские модели переноса теп- лоты и массы примени- тельно к теп- лотехниче- ским и тепло- технологиче-	знает законы и основные физико- математиче- ские модели переноса те- плоты и массы при- менительно к теплотех- ническим и теплотехно-	плохо знает законы и основные физикоматематическим модели переноса теплоты и массы применительно к теплотехническим и	уровень знаний ни-же мини-мального требования, допускает грубые ошибки

кам и системам	ским установкам и системам без ошибок	логическим установкам и системам, при ответе может допустить несколько негрубых ошибок	теплотехно- логическим установкам и системам	
уметь:				
уметь проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД	демонстрирует умение проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД, не допускает ошибок	демонстрирует умение проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД, допускает ряд небольших ошибок	демонстрирует умение проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД, задания выполнены не в полном объёме	демонстрирует умение проводить термодинамический анализ циклов тепловых машин с целью оптимизации их рабочих характеристик и максимизации КПД, допускает грубые ошибки
уметь:				
уметь рассчитывать температурные поля (поля концентраций веществ) в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов тепломассообмена, обеспечения нормального температурного режима работы элементов оборудования и минимизации потерь теплоты; рассчиты-	рассчитывать	демонстрирует умение рассчитывать температурные поля (поля концентраций веществ) в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов тепломассообмена, обеспечения нормального температурного режима	демонстрирует умение рассчитывать температурные поля (поля концентраций веществ) в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов тепломассообмена, обеспечения нормального температурного режима	демонстрирует умение рассчитывать температурные поля (поля концентраций веществ) в элементах конструкции тепловых и теплотехнологических установок с целью интенсификации процессов тепломассообмена, обеспечения нормального темпера-

вать передаваемые тепловые потоки	ментов оборудования и минимизации потерь теплоты, рассчитывать передаваемые тепловые потоки, не допускает ошибок	работы элементов оборудования и минимизации потерь теплоты рассчитывать передаваемые тепловые потоки, допускает ряд небольших ошибок	работы элементов оборудования и минимизации потерь теплоты рассчитывать передаваемые тепловые потоки, задания выполнены не в полном объёме	турного режима ра- боты эле- ментов оборудова- ния и ми- нимизации потерь теп- лоты рас- считывать передавае- мые тепло- вые потоки, допускает грубые ошибки
владеть основами термодинамического анализа рабочих процессов в тепловых машинах, определения параметров их работы, тепловой эффективности	продемонстрированы навыки владения основами термодинамического анализа рабочих процессов в тепловых машинах, определения параметров их работы, тепловой эффективности, без ошибок и недочетов	продемонстрированы базовые навыки владения основами термодинамического анализа рабочих процессов в тепловых машинах, определения параметров их работы, тепловой эффективности, допущен рядмелких ошибок	имеется минимальный набор навыков для решения стандартных задач, много ошибок	не продемонстрированы базовые навыки, допущены грубые ошибки
владеть:			<u> </u>	
владеть основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехнологического оборудования	продемонстрированы навыки владения основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехнологического обо-	продемонстрированы базовые навыки владения основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехно-	имеется минимальный набор навыков для решения стандартных задач, много ошибок	не продемонстрир ованы базовые навыки, допущены грубые ошибки

	рудования, без ошибок и	логического оборудова-
	недочетов	ния, допу-
		щен ряд
		мелких
		ошибок

Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации приведены в Приложении к рабочей программе дисциплины. Полный комплект заданий и материалов, необходимых для оценивания результатов обучения по дисциплине, хранится на кафедреразработчике в бумажном и электронном виде.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Учебно-методическое обеспечение

Основная литература

№ п/п	Автор(ы)	Наимено- вание	Вид издания (учебник, учебное по- собие, др.)	Место издания, издательство	Год издания	Адрес элек- тронного ресурса	Кол-во экземпляров в библиотеке КГЭУ
1	Цветков Ф. Ф., Гри- горьев Б. А.	Тепло- массо об- мен	учебное пособие для вузов	М.: Изда- тельский дом МЭИ	2006		142
2	Краснов С. И.	Гидрога- зоди на- мика	учебное пособие	Казань: КГЭУ	2010		150
3	Кирил- лин В.А., Сычев В.В., Шейн- длин А.Е.	Техниче- ская тер- модинам ика	учебник для вузов	М.: Изда- тельский дом МЭИ	2008		196

Дополнительная литература

№ π/π	Автор(ы)	Наимено- вание	Вид издания (учебник, учебное по- собие, др.)	Место издания, издательство	Год издания	Адрес элек- тронного ресурса	Кол-во экземпляров в библиотеке КГЭУ
1	Цветков Ф. Ф., Керимов Р. В.,	Задачник по тепло- массоо бмену	учебное пособие для вузов	М.: Изда- тельский дом МЭИ	2008		219

	Величко В. И.						
2	Краснов С. И.	Сборник задач по гидрога- зоди на- мике	учебно- метод. по- собие	Казань: КГЭУ	2010		20
3	Попкова О. С., Шари- пов И. И., Со- ловьева О. В.	Теорети- ческ ие основы теплотех- ник и	практикум для студентов очной формы обучения по образовательн ым программам направлений подготовки 13.03.01 "Теплоэнергет ика и теплотехника", 13.03.02 "Электроэнерг етика и электротехник а", 13.03.03 "Энергетическ ое машиностроен ие", 16.03.01 "Техническая физика"	Казань: КГЭУ	2019	https://lib.kge u.ru/irbis64r_ 1 5/scan/231эл. pdf	2

6.2. Информационное обеспечение

6.2.1. Электронные и интернет-ресурсы

№ п/п	Наименование электронных и интернет-ресурсов	Ссылка
1	Электронно-библиотечная система «Лань»	https://e.lanbook.com/
2	Электронно-библиотечная система «ibooks.ru»	https://ibooks.ru/
3	Электронно-библиотечная система «book.ru»	https://www.book.ru/
4	Энциклопедии, словари, справочники	http://www.rubricon.com
5	Портал "Открытое образование"	http://npoed.ru
6	Единое окно доступа к образовательным ресурсам	http://window.edu.ru

6.2.2. Профессиональные базы данных

№ п/п	Наименование профессиональных баз данных	Адрес	Режим доступа
1	Техническая библиотека	http://techlibrary.ru	http://techlibrary.
2	Журнал технической физики	journals.ioffe.ru	journals.ioffe.ru

6.2.3. Информационно-справочные системы

№ п/п	Наименование информационноссправочных систем	Адрес	Режим доступа
1	Научная электронная библиотека	http://elibrary.ru	http://elibrary.ru
2	Российская государственная библиотека	http://www.rsl.ru	http://www.rsl.ru
3	ИСС «Кодекс» / «Техэксперт»	http://app.kgeu.local/Home/Apps	http://app.kgeu.local/Home/Apps
4	Образовательный портал	http://www.ucheba.com	http://www.ucheba.com

6.2.4. Лицензионное и свободно распространяемое программное обеспечение дисциплины

№ п/п	Наименование программного обеспечения	Способ распространения (лицензионное/свободно)	Реквизиты подтверждающих документов
1	Windows 7 Профессиональная (Pro)	Пользовательская операционная система	ЗАО "СофтЛайн- Трейд" №2011.25486 от 28.11.2011 Неискл. право. Бессрочно

7. Материально-техническое обеспечение дисциплины

№ п/п	Вид учебной работы	Наименование специальных помещений и помещений для СРС	Оснащенность специальных помещений и помещений для СРС
1	Лекционные занятия	Учебная аудитория для проведения занятий лекционного типа Д-102, Д-104	доска аудиторная (2 шт.), акустическая система, усилитель- микшер для систем громкой связи, миникомпьютер, монитор, проектор, экран настенно- потолочный, микрофон
2	Практические занятия	Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Д-118	автолабораторные комплексы для проведения 8-ми лаб.работ (8 шт.), лабораторный комплекс «Сгун» для проведения 7-ми лаб.работ (1шт.), портативная лаборатория «Капелька 1,2,3» мобильная (10 шт.), ноутбук мобильные (3шт.), барометр БАММ-1 с поверкой мобильный, проек-

			тор, комплект плакатов в малых
			багетных рамах (10 шт) по «Тер-
			модинамике»:а) дросселирования
			1,2; б) понятие и определение
			термодинамики; в) свойство иде-
			ального газа; г) процессы в ком-
			прессоре 1,2.Комплекс плакатов
			в багетных рамках по «Механи-
			ке, жидкости и газа»: а) расход;
			б) основные свойства гидравли-
			ческого давления; в) силы дейст-
			вующие в жидкости. Плакат
			«Греческий и латинский алфа-
			вит». Демонстрационный ком-
			, , <u> </u>
			1
			равлика и гидропривод» (граф-
<u> </u>			проектор «Вега» и экран)
			доска аудиторная, автолабора-
			торное место студента с ПЭВМ 1
			мобильный (9 шт.), экран, авто-
			лабораторные комплексы для
			проведения 9 лабораторных ра-
			бот (9 шт.), аэродинамическая
			труба 3 мобильных модуля, ла-
			бораторный стол 1 лабораторной
			работа по ТМО (2шт), ноутбук
			(7 шт.), барометр БАММ-1 с по-
			веркой мобильный, блок регист-
			рации параметров воздушной
			струи для аэродинамической
			трубы мобильный, модули для
			аэродинамической трубы мо-
		Учебная аудитория для прове-	бильный (2 шт.), вольтметр В7-
		дения занятий семинарского	21 мобильный, вольтметр В7-
3	Практические	• • • •	21А мобильный (мобильный),
	занятия	альных консультаций, текущего	вольтметр универсальный мо-
		контроля и промежуточной ат-	бильный, пылесос А-2254 Мс
		тестации Д-108	стационарный, лабораторный ис-
			точник питания W.E.P.PS N305Д
			мобильный, световая модель для
			определения угловых коэффици-
			ентов излучения плоскости на
			трубный пучок мобильный, про-
			ектор, комплект плакатов в ба-
			гетных рамах (6 шт) по «Тепло-
			массообмену»: а) прямоток; б)
			противоток; в) перекрестный ток;
			г) определение среднего темпе-
			ратурного напора; д) поправки на
			токи теплоносителей; е) сложный
			ток. Комплекс плакатов в багет-
			ных рамках (3 шт.): а) уравнение
			india parintali (5 mi.). a) spanienne

			Бернулли для элементарной струи; б) свойство жидкости, вязкость; в) схема изменения напоров по длине гидродинамической трубы. Плакат «Греческий и латинский алфавит», демонстрационный комплекс «Тепломассообмен» (графпроектор «Вега» и экран), демонстрационный комплекс «Гидравлика и гидропривод»
	Практические занятия	Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Д-116	ноутбук, проектор, демонстрационный комплекс: ТТД, ТМО и «Гидравлика и гидропривод» (экран и графпроектор «Вега»)
4	Самостоятель-	Компьютерный класс с выходом в Интернет В-600а	Специализированная учебная мебель на 30 посадочных мест, 30 компьютеров, технические средства обучения (мультимедийный проектор, компьютер (ноутбук), экран), видеокамеры, программное обеспечение
4	ная работа обучающегося	Читальный зал библиотеки	Специализированная мебель, компьютерная техника с возможностью выхода в Интернет и обеспечением доступа в ЭИОС, мультимедийный проектор, экран, программное обеспечение

8. Особенности организации образовательной деятельности для лиц с ограниченными возможностями здоровья и инвалидов

Лица с ограниченными возможностями здоровья (ОВЗ) и инвалиды имеют возможность беспрепятственно перемещаться из одного учебно-лабораторного корпуса в другой, подняться на все этажи учебно-лабораторных корпусов, заниматься в учебных и иных помещениях с учетом особенностей психофизического развития и состояния здоровья.

Для обучения лиц с OB3 и инвалидов, имеющих нарушения опорнодвигательного аппарата, обеспечены условия беспрепятственного доступа во все учебные помещения. Информация о специальных условиях, созданных для обучающихся с OB3 и инвалидов, размещена на сайте университета www/kgeu.ru. Имеется возможность оказания технической помощи ассистентом, а также услуг сурдопереводчиков и тифлосурдопереводчиков.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушенным слухом справочного, учебного материала по дисциплине обеспечиваются следующие условия:

- для лучшей ориентации в аудитории, применяются сигналы оповещения

о начале и конце занятия (слово «звонок» пишется на доске);

- внимание слабослышащего обучающегося привлекается педагогом жестом (на плечо кладется рука, осуществляется нерезкое похлопывание);
- разговаривая с обучающимся, педагогический работник смотрит на него, говорит ясно, короткими предложениями, обеспечивая возможность чтения по губам.

Компенсация затруднений речевого и интеллектуального развития слабослышащих обучающихся проводится путем:

- использования схем, диаграмм, рисунков, компьютерных презентаций с гиперссылками, комментирующими отдельные компоненты изображения;
- регулярного применения упражнений на графическое выделение существенных признаков предметов и явлений;
- обеспечения возможности для обучающегося получить адресную консультацию по электронной почте по мере необходимости.

Для адаптации к восприятию лицами с OB3 и инвалидами с нарушениями зрения справочного, учебного, просветительского материала, предусмотренного образовательной программой по выбранному направлению подготовки, обеспечиваются следующие условия:

- ведется адаптация официального сайта в сети Интернет с учетом особых потребностей инвалидов по зрению, обеспечивается наличие крупношрифтовой справочной информации о расписании учебных занятий;
- педагогический работник, его собеседник (при необходимости), присутствующие на занятии, представляются обучающимся, при этом каждый раз называется тот, к кому педагогический работник обращается;
- действия, жесты, перемещения педагогического работника коротко и ясно комментируются;
- печатная информация предоставляется крупным шрифтом (от 18 пунктов), тотально озвучивается;
 - обеспечивается необходимый уровень освещенности помещений;
- предоставляется возможность использовать компьютеры во время занятий и право записи объяснений на диктофон (по желанию обучающихся).

Форма проведения текущей и промежуточной аттестации для обучающихся с ОВЗ и инвалидов определяется педагогическим работником в соответствии с учебным планом. При необходимости обучающемуся с ОВЗ, инвалиду с учетом их индивидуальных психофизических особенностей дается возможность пройти промежуточную аттестацию устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п., либо предоставляется дополнительное время для подготовки ответа.

9. Методические рекомендации для преподавателей по организации воспитательной работы с обучающимися

Методическое обеспечение процесса воспитания обучающихся выступает одним из определяющих факторов высокого качества образования. Преподаватель вуза, демонстрируя высокий профессионализм, эрудицию, четкую гражданскую позицию, самодисциплину, творческий подход в решении профессиональных задач, в ходе образовательного процесса способствует формированию гармоничной личности.

При реализации дисциплины преподаватель может использовать следующие методы воспитательной работы:

- методы формирования сознания личности (беседа, диспут, внушение, инструктаж, контроль, объяснение, пример, самоконтроль, рассказ, совет, убеждение и др.);
- методы организации деятельности и формирования опыта поведения (задание, общественное мнение, педагогическое требование, поручение, приучение, создание воспитывающих ситуаций, тренинг, упражнение, и др.);
- методы мотивации деятельности и поведения (одобрение, поощрение социальной активности, порицание, создание ситуаций успеха, создание ситуаций для эмоционально-нравственных переживаний, соревнование и др.)

При реализации дисциплины преподаватель должен учитывать следующие направления воспитательной деятельности:

Гражданское и патриотическоевоспитание:

- формирование у обучающихся целостного мировоззрения, российской идентичности, уважения к своей семье, обществу, государству, принятым в семье и обществе духовно-нравственным и социокультурным ценностям, к национальному, культурному и историческому наследию, формирование стремления к его сохранению и развитию;
- формирование у обучающихся активной гражданской позиции, основанной на традиционных культурных, духовных и нравственных ценностях российского общества, для повышения способности ответственно реализовывать свои конституционные права и обязанности;
- развитие правовой и политической культуры обучающихся, расширение конструктивного участия в принятии решений, затрагивающих их права и интересы, в том числе в различных формах самоорганизации, самоуправления, общественно-значимой деятельности;
- формирование мотивов, нравственных и смысловых установок личности, позволяющих противостоять экстремизму, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам, межэтнической и межконфессиональной нетерпимости, другим негативным социальным явлениям.

Духовно-нравственноевоспитание:

- воспитание чувства достоинства, чести и честности, совестливости, уважения к родителям, учителям, людям старшего поколения;
 - формирование принципов коллективизма и солидарности, духа мило-

сердия и сострадания, привычки заботиться о людях, находящихся в трудной жизненной ситуации;

- формирование солидарности и чувства социальной ответственности по отношению к людям с ограниченными возможностями здоровья, преодоление психологических барьеров по отношению к людям с ограниченными возможностями;
- формирование эмоционально насыщенного и духовно возвышенного отношения к миру, способности и умения передавать другим свой эстетический опыт.

Культурно-просветительское воспитание:

- формирование уважения к культурным ценностям родного города, края, страны;
 - формирование эстетической картины мира;
 - повышение познавательной активности обучающихся.

Научно-образовательное воспитание:

- формирование у обучающихся научного мировоззрения;
- формирование умения получать знания;
- формирование навыков анализа и синтеза информации, в том числе в профессиональной области.

Физическое воспитание:

- формирование ответственного отношения к своему здоровью, потребности в здоровом образе жизни;
 - формирование культуры безопасности жизнедеятельности;
- формирование системы мотивации к активному и здоровому образу жизни, занятиям спортом, культуры здорового питания и трезвости.

Профессионально-трудовое воспитание:

- формирование добросовестного, ответственного и творческого отношения к разным видам трудовой деятельности;
- формирование навыков высокой работоспособности и самоорганизации, умение действовать самостоятельно, мобилизовать необходимые ресурсы, правильно оценивая смысл и последствия своих действий;

Экологическое воспитание:

- формирование экологической культуры, бережного отношения к родной земле, экологической картины мира, развитие стремления беречь и охранять природу;

Лист внесения изменений

/20	Дополнения и измене учебный год	ния в рабочей	программе	дисциплины	на 20_
	В программу вносятся	следующие изм	енения:		
1.					
2.					
3.					
	Указываются ном и кратко да	ера страниц, на ко ется характерисп	_		
	рамма одобрена на засе; , протокол №	дании кафедры	–разработчи	ка «»	
Зав. к	афедрой	сь, дата	И.О. Фамі	Р ИЦИ	
Прог	рамма одобрена методи	ческим советом	института _		
«)	»20г., п	іротокол №			
Зам.	. директора по УМР	Подпись, дата	И.О. Фамі	Р ИЦИ	
Согла	асовано:				
Рукої	водитель ОПОП	Подпись, дата	И.О. Ф	Рамилия	

Приложение к рабочей программе дисциплины

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное

учреждение высшего образования

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КГЭУ»)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Теоретические основы теплотехники

(Наименование дисциплины в соответствии с РУП)

Направление подготовки

16.03.01Техническая физика (Код и наименование направления подготовки)

Направленность(и) (профиль(и))

(и) (профиль(и)) <u>Теплофизика</u> (Наименование направленности (профиля) образовательной программы)

Квалификация

бакалавр

(Бакалавр / Магистр)

Оценочные материалы по дисциплине «Теоретические основы теплотехники» - комплект контрольно-измерительных материалов, предназначенных для оценивания результатов обучения на соответствие дескрипторам достижения компетенции ОПК-1, ОПК-2, ОПК-3.

Оценивание результатов обучения по дисциплине осуществляется в рамках текущего контроля успеваемости, проводимого по балльно-рейтинговой системе (БРС), и промежуточной аттестации.

Текущий контроль успеваемости обеспечивает оценивание процесса обучения по дисциплине. При текущем контроле успеваемости используются следующие оценочные средства: тестирование (письменно или с использованием компьютера); контроль выполнения самостоятельной работы обучающихся.

Промежуточная аттестация имеет целью определить уровень достижения запланированных результатов обучения по дисциплине за 3 семестр. Форма промежуточной аттестации экзамен.

Оценочные материалы включают задания для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся, разработанные в соответствии с рабочей программой дисциплины.

1.Технологическая карта Семестр 3

		Наимено-	Заплани- рованные дескрипторы освоения	Уровень освоения дисциплины, баллы			
Номер раздела/				неудов-но	удов-но	хорошо	отлично
темы дис-	Вид СРС	оценочного		не зачтено		зачтено	
циплины		средства	дисциплине	низкий	ниже среднего	средний	высокий
		Текуг	ций контроль	успеваемос	ГИ		
1	Тестиров аниепора зделу"Ги дрогазод инамика"	Тест	31 (ОПК-1) У1 (ОПК-2) В1 (ОПК-2)	менее2	2-3	3-4	4-5
1	Задачидл ясамосто ятельног орешени япоразде лу"Гидро газодина мика"	РЗ	У1 (ОПК-2) В1 (ОПК-2)	менее2	2-3	3-4	4-5
1	Подготов ка,оформ лениеиза щита Лаборато рнаярабо та№1	ЛР	31 (ОПК-1) У1 (ОПК-2) В1 (ОПК-2)	менее2	2-3	3-4	4-5

2	Тестиров ание пораздел у"Термод инамичес киепроце ссыизако	Тест	32 (ОПК-1) У2 (ОПК-2) 31 (ОПК-3) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
2	ны" Задачидл ясамосто ятельног орешени япоразде лу"Термо динамич ескиепро цессыиза коны"	Р3	У2 (ОПК-2) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
2	Тестиров ание пораздел у"Циклы тепловых ихолодил ьныхуста новок"	Тест	32 (ОПК-1) У2 (ОПК-2) 31 (ОПК-3) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
2	Подготов ка,оформ лениеиза щита Лаборато рнаярабо та№2	ЛР	32 (ОПК-1) У2 (ОПК-2) 31 (ОПК-3) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
2	Задачидл ясамосто ятельног орешени япоразде лу"Цикл ытеплов ыхихоло дильных установо к"	Р3	У2 (ОПК-2) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
2	Подготов ка,оформ лениеиза щита Лаборато рнаярабо та№3		32 (ОПК-1) У2 (ОПК-2) 31 (ОПК-3) У1 (ОПК-3) В1 (ОПК-3)	менее2	2-3	3-4	4-5
3	Тестиров	Тест	33 (ОПК-1)	менее2	2-3	3-4	4-5

Итого баллов 0-54 55-69 70-84 85-100							
	Подготовка к экзамену	Задания к экзамену		менее30	31-33	34-36	37-40
Промежуточная аттестация							
]	Всего баллов	Менее 24	24-36	36-48	48-60
3	Подготов ка,оформ лениеиза щита Лаборато рнаярабо та№4	ЛР	33 (ОПК-1) У3 (ОПК-2) 32 (ОПК-3) У2 (ОПК-3) В2 (ОПК-3)	менее2	2-3	3-4	4-5
3	Задачидл ясамосто ятельног орешени япоразде лу"Тепло обмен"	Р3	У3 (ОПК-2) У2 (ОПК-3) В2 (ОПК-3)	менее2	2-3	3-4	4-5
	ание пораздел у"Теплоо бмен"		У3 (ОПК-2) 32 (ОПК-3) У2 (ОПК-3) В2 (ОПК-3)				

2. Перечень оценочных средств

Краткая характеристика оценочных средств, используемых при текущем контроле успеваемости и промежуточной аттестации обучающегося по дисциплине:

Наименование оценочного средства	Краткая характеристика оценочного средства	Оценочные материалы
Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося	Комплект тестовых заданий
Разноуровневые задачи и задания (РЗ)	Различают задачи и задания: а) репродуктивного уровня, позволяющие оценивать и диагностировать знание фактического материала (базовые понятия, алгоритмы, факты) и умение правильно использовать специальные термины и понятия, узнавание объектов изучения в рамках определенного раздела дисциплины; б) реконструктивного уровня, позволяющие оценивать и диагностировать умения синтезировать, анализировать, обобщать фактический и теоретический материал с формулированием конкретных выводов, установлением причинно-следственных связей; в) творческого уровня, позволяющие оценивать и диагностировать умения, интегрировать знания различных областей, аргументировать собственную точку зрения	Комплект разноуровневых задач

Лабораторнаяр абота(ЛР)	ЛабораторнаяработавыполняетсясогласноМетодичес кимуказаниямовыполнениилабораторнойработы,выд аннымпреподавателемназанятии. Отчетполабораторн ойработеоформляется индивидуальнокаждымстудент ом, выполнившимнеобходимые эксперименты. Отчетд олженсодержаты всепункты представленные вметодич ескомуказании	заданияклаборатор нымработам
Экзамен(экз)(Э	Комплектвопросовизадачдлясдачипромежуточнойат	вопросыдляподгото
кз)	тестациивформеэкзамена	вкикэкзамену

3. Фонд оценочных средствтекущего контроля успеваемости обучающихся

Оценка промежуточной аттестации студентов по итогам освоения дисциплины «Теоретические основы теплотехники» производится при помощи следующих оценочных средств:

Требования по оформлению лабораторных работ

При подготовке к лабораторной работе студенту необходимо:

- -изучить теоретический материал по соответствующей теме;
- -изучить порядок проведения эксперимента;
- -ответить на все контрольные вопросы;
- -оформить заготовку отчета (при отсутствии заготовки отчета студент не допускается к выполнению лабораторной работы).

Заготовка отчета оформляется на отдельных листах и должна обязательно содержать название и цель работы, схему лабораторной установки с указанием всех ее составляющих частей и таблицы, в которые будут заноситься результаты измерений.

На занятии студенты отвечают на теоретические вопросы по соответствующей теме, выполняют лабораторную работу, делают необходимые расчеты, строят графики и делают выводы. При вычислениях надо следить за правильной размерностью величин, подставляемых в формулы. Предпочтительно использовать основные единицы размерностей в Международной системе единиц.

Правильно оформленный отчет в конце занятия подписывается преподавателем.

Лабораторная работа считается выполненной, если она представлена в полностью оформленном виде и зачтенной, если основные результаты обоснованы и защищены студентом при устном опросе, включающем ответы на контрольные вопросы.

Разноуровневые задачи и задания (РЗ)

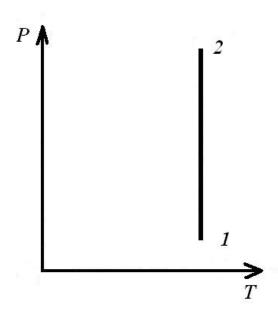
Примеры задач для самостоятельного решения

После рассмотрения на лекционных занятиях основных тем, необходимых для выполнения письменное задания, студенту предлагается выполнить задание, представленное в виде задачи по тематике лекционных занятий с подробным развернутым решением.

- 1. По трубопроводу диаметром 270×10 мм перекачивается вода с расходом 150 м³/час. Определить скорость воды в трубе и режим её движения.
- 2. Бензол с расходом 200 т/час и средней температуре 40°С поступает в трубный пучок одноходового кожухотрубчатого теплообменника, состоящего из 717 труб диаметром $d\times\delta=20\times2$ мм. Определить скорость бензола в трубах трубного пучка и режим его движения в них.
- 3. На трубопроводе имеется переход с диаметра 50 мм на диаметр 100 мм (диаметры внутренние). По трубопроводу движется вода, имеющая температуру 20°С. Её скорость в узком сечении 1,5 м/с.

Определить: 1. объёмный и массовый расходы воды;

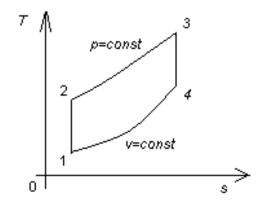
- 2. скорость воды в широком сечении;
- 3. режимы течения в узком и широком сечениях.
- 4. Азот с расходом 6400 м³/час (при н.у.) подаётся в трубный пучок одноходового кожухотрубчатого теплообменника. Абсолютное давление газа 3 кГс/см². Температура на входе в трубный пучок 120°С, на выходе 30°С. Число труб в аппарате 379 шт., их диаметр 16×1.5 мм. Определить: 1. скорость азота на входе в трубный пучок и на выходе из него; 2. режим движения азота на входе и на выходе.
- 5. Труба диаметром 200×10 мм переходит в трубу диаметром 50×5 мм, после чего поднимается вверх на 20 м. В нижнем и верхнем сечениях трубы установлены манометры. Нижний манометр показывает давление p_1 =5 к Γ с/см2. По трубопроводу перекачивается вода с расходом 55 м 3 /час и температурой 40°С. Определить показания верхнего манометра. Наличием сил вязкости пренебречь.
- 6. По трубопроводу длиной 15 км и диаметром 100×5 мм перекачивается бензол с расходом 10 т/час при средней температуре 20°С. Стенки трубопровода гладкие. Манометр, установленный в начале, показывает давление 5 ат. Определить показание манометра, установленного в конце трубопровода.


Тест

Примеры тестовых заданий

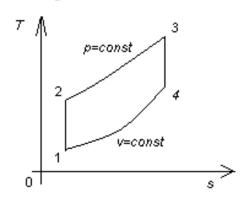
1. К термодинамическим характеристикам состояния идеального газа относятся
□ объем, давление и молярная масса
□ давление и масса
□ температура, объем, давление
□ температура, объем, масса

2. Плотность - это отношение
□ массы к объему
□ объема к массе
□ давления к температуре
□ температуры к массе
3. Уравнение состояния для идеального газа записывается в виде
$\square pv = RT$
$\Box pT = Rv$
$\square pv = \frac{R}{T}$
1
$\Box pT = \frac{R}{R}$
v
4. Символ R в уравнении состояния $pv = RT$ идеальных газов означает
🗆 объем
удельный объем
универсальную газовую постоянную
□ удельную газовую постоянную
5. Теплоемкость, отнесенная к единице объема вещества
□ объемная □ ураборуая
□ изобарная
□ изохорная6. Формула Майера записывается в виде
$\Box c_{v} - c_{p} = R$
$\Box c_p - c_v = R$
$\Box c_{v} = \frac{R}{c_{p}}$ $\Box c_{p} = \frac{R}{c_{v}}$
c_p
$\Box c = \frac{R}{}$
$-c_p$ c_v
7. Внутренняя энергия монеты увеличивается, если ее
□ нагреть
□ заставить двигаться на большей скоростью
□ опустить к поверхности Земли
\square опустить в воду той же температуры
8. Удельный объем кислорода при давлении 4 МПа и температуре 300°С равен
\square 0,0372 m^3/kr
\square 0,0011 m^3/kg
\square 0,0195 m^3/kr
$\Box 0.0006 \mathrm{m}^3/\mathrm{kg}$


- 9. Процесс, для которого первый закон термодинамики имеет вид: $dU = pdV + \delta Q$, называют
 - □ адиабатным
 - □ изобарным
 - □ изотермическим
 - □ изохорным
- 10. На рисунке изображен

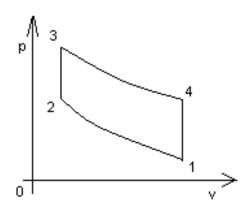
- □ изохорный процесс
- □ изобарный процесс
- □ изотермический процесс
- □ адиабатный процесс
- 11. Если показатель политропы n = 1, то процесс
 - □ адиабатный
 - □ изотермический
 - □ изохорный
 - □ изобарный
- 12. Второй закон термодинамики записывается в виде
 - $\Box ds = \frac{dQ}{T}$
 - $\Box dS \ge \frac{dQ}{T}$
 - $dS < \frac{dQ}{T}$
 - $\Box dS \le \frac{dQ}{T}$
- 13. Внутренняя энергия идеального газа зависит
 - □ от объема
 - □ от температуры
 - □ от давления

□ от энтальпии
14. Второй закон термодинамики
 □ любой реальный самопроизвольный процесс является необратимым □ теплота может сама собой переходить от более холодного тела к более нагретому
Возможно построить периодически действующую машину, все
действия которая сводилось бы к поднятию некоторого груза и
охлаждению теплового источника
15. При изобарном и изохорном процессах, если количество теплоты,
передаваемое газу в обоих случаях, одинаково
□ в обоих случаях температура не изменяется
□ в обоих случаях изменяется на одинаковое значения
□ в изобарном процессе газ нагревается сильнее
□ в изохорном газ нагревается сильнее
16. Идеальный одноатомный газ находится в сосуде под давлением $2 \cdot 10^3 \mathrm{\Pia}$.
Его внутренняя энергия равна 1,8 Дж. Вместимость сосуда м ³ . (Ответ
округлите до десятых).
17. Степенью сжатия в цикле Дизеля
p 2 3 4 1
0 ' γ'
называется
\square отношение объемов $\frac{v_3}{v_4}$
\square отношение объемов $\frac{v_1}{v_2}$
\square отношение давлений $\frac{p_2}{p_1}$
\square отношение давлений $\frac{p_3}{p_4}$


18. На Т-ѕ диаграмме

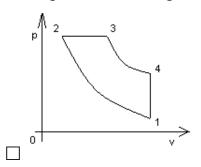
изображен цикл

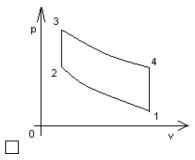
- □ Тринклера
- □ Отто
- □ Дизеля
- □ Карно


19. Процесс подвода теплоты в цикле ДВС на диаграмме

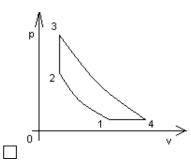
происходит на участке

- □ 1-2
- □ 2-3
- □ 3-4
- □ 4-1

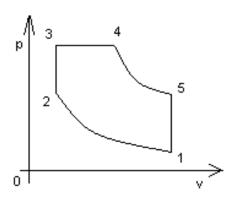

20. На р-v диаграмме




изображен цикл


- □ Тринклера
- □ Отто

- □ Карно□ Дизеля
- 21. р-у диаграмма цикла Тринклера



22. Процесс подвода теплоты в цикле ДВС на диаграмме

происходит на участках

 □ 1-2, 2-3 □ 2-3, 3-4 □ 3-4, 4-1 □ 4-1, 1-2 23. Степень сжатия влияет на □ термический к.п.д. □ количество подводимого □ количество отводимого 	тепла	
□ теплотворную способно	ость топлива	
24. Установите соответствие		
Цикл Дизеля	p=const v=const v=const	→
Цикл Тринклера	7 p=const 4 3 v=const 1 v=const 5 s	⇒
Цикл Отто	7 ↑ v=const 1	

v=const

Цикл Гемфри

Критерии оценивания результатов

Номер задания	Критерии оценки	Баллы
1	Тест (проводится в виде	0-5
	компьютерного тестирования с	
	помощью системы LMSMoodle)	
2	Разноуровневые задачи и задания (РЗ)	0-5
	Задача решена верно, приведены все	
	единицы измерения 5 баллов	
	В решении задачи допущены	
	небольшие расчетные ошибки (4б)	
	Задача решена не полностью, но часть	
	приведенного решения верна (3б)	
	Задача решена полностью неверно	
	(менее 2б)	
3	Выполнение и сдача лабораторных	0-5
	работ	

4. Фонд оценочных средствпромежуточной аттестации

Вопросы для приема экзамена по дисциплине

Экзамен проводится в письменной форме, экзаменуемый получает билет, в котором содержится два теоретических вопросаи задача.

Низкий уровень

- 1. Жидкости и газы как сплошные среды, их основные параметры свойства: сопротивление сдвигу (вязкость), сжимаемость, расширение и параметры состояния: давление, температура, плотность
- 2. Основные параметры состояния тела
- 3. Термическое уравнение состояния идеального газа
- 4. Уравнение состояния реальных газов
- 5. Первый закон термодинамики
- 6. Основные законы теплообмена;
- 7. Теплопроводность плоской стенки, граничные условия I рода для однослойной стенки;
- 8. Теплопроводность цилиндрической стенки, граничные условия І рода для однослойной стенки
- 9. Биполярный транзистор.
- 10.Полевой транзистор.
- 11.Операционный усилитель Усилительный каскад с общим эммитером.

Ниже среднего уровень

- 1. Эйлерово и Лагранжево описание жидких потоков. 3D,2D, осесимметричные и одномерные потоки. Стационарные и нестационарные течения
- 2. Модели идеальной (невязкой) и ньютоновой жидкости, напряженное состояние в статике и движении, нормальные и касательные напряжения
- 3. Линии и трубки тока, объемный и массовый расход, уравнение неразрывности для струйки, интеграл Бернулли для невязкой жидкости, гидростатика
- 4. Закон Дальтона
- 5. Массовые, молярные и объемные доли
- 6. Связь между долями
- 7. Теплоемкость
- 8. Изотермический, изохорный и изобарный процессы процесс
- 9. Адиабатный процесс
- 10. Работа, внутренняя энергия и теплота изотермического, изобарного, изохорного и адиабатного процессов
- 11. Изображение на Тs диаграмме термодинамических процессов
- 12. Зависимость между параметрами газа в политропном процессе
- 13. Работа, внутренняя энергия и теплота политропного процесса
- 14. Исследование политропного процесса
- 15. Цикл Карно.
- 16. Уравнение состояния реальных газов
- 17. Теплопроводность плоской стенки, граничные условия I рода для многослойной стенки;
- 18.Теплопроводность цилиндрической стенки, граничные условия І рода для многослойной стенки.
- 19. Теплопроводность плоской стенки, граничные условия III рода;
- 20. Теплопроводность цилиндрической стенки, граничные условия III рода;
- 21. Критический диметр тепловой изоляции;
- 22. Теплопроводность стенки при пористом охлаждении; Способы интенсификации теплопередачи.

Средний уровень

- 1. Жидкости и газы как сплошные среды, их основные параметры свойства: сопротивление сдвигу (вязкость), сжимаемость, расширение и параметры состояния: давление, температура, плотность
- 2. Эйлерово и Лагранжево описание жидких потоков. 3D,2D, осесимметричные и одномерные потоки. Стационарные и нестационарные течения
- 3. Модели идеальной (невязкой) и ньютоновой жидкости, напряженное состояние в статике и движении, нормальные и касательные напряжения
- 4. Линии и трубки тока, объемный и массовый расход, уравнение неразрывности для струйки, интеграл Бернулли для невязкой жидкости, гидростатика

- 5. Понятие о пограничных слоях, условные толщины ПС, явление отрыва ПС.
- 6. Турбулентность. Представление параметров по Рейнольдсу Турбулентные напряжения
- 7. Профили (эпюры) скорости при ламинарном и турбулентном течениях в трубах и на пластине
- 8. Сопротивление движению тела в жидкости. Хорошо и плохообтекаемые тела
- 9. Уравнение Бернулли для жидкости с учетом вязких потерь (3 формы). Полный напор, статическое, динамическое и полное давление, их экспериментальное определение
- 10.Предмет термодинамики
- 11. Основные параметры состояния тела
- 12. Понятие о термодинамическом процессе
- 13. Термическое уравнение состояния идеального газа
- 14. Закон Дальтона
- 15. Массовая доля
- 16. Молярная доля
- 17.Объемная доля
- 18.Связь между долями
- 19. Энергия
- 20. Работа и теплота
- 21.Энтальпия
- 22. Теплоемкость
- 23. Зависимость теплоемкости от температуры
- 24. Теплоемкость газовой смеси
- 25. Уравнение первого закона термодинамики для закрытой системы
- 26. Изотермический процесс
- 27.Изохорный процесс
- 28.Изобарный процесс
- 29. Адиабатный процесс
- 30. Работа, внутренняя энергия и теплота изотермического, изобарного, изохорного и адиабатного процессов
- 31. Закономерности термодинамических процессов
- 32. Зависимость между параметрами газа в политропном процессе
- 33. Работа, внутренняя энергия и теплота политропного процесса
- 34.Исследование политропного процесса
- 35.Положение второго закона термодинамики. Циклы прямые и обратные
- 36.Энтропия
- 37. Изменение энтропии в процессах
- 38.Изображение на Ts -диаграмме основных процессов
- 39. Термодинамическое равновесие
- 40. Уравнение состояния реальных газов
- 41. Изменение агрегатного состояния вещества
- 42. Теплопередача оребренной стенки;

- 43. Регулярный режим охлаждения (нагревания) тел;
- 44. Теплопроводность однородной пластины при наличии внутренних источников тепла;
- 45.Теплопроводность цилиндрического стержня при наличии внутренних источников тепла;
- 46.Теплопроводность однородной цилиндрической стенки при наличии внутренних источников тепла.
- 47. Нестационарная теплопроводность плоской пластины, регулярные и нерегулярные тепловые режимы;
- 48. Конвективный теплообмен;
- 49. Гидравлический и тепловой пограничные слои, турбулентность;
- 50. Теория подобия, и его уравнение;
- 51. Физический смысл чисел подобия.

Высокий уровень

- 1. Жидкости и газы как сплошные среды, их основные параметры свойства: сопротивление сдвигу (вязкость), сжимаемость, расширение и параметры состояния: давление, температура, плотность
- 2. Эйлерово и Лагранжево описание жидких потоков. 3D,2D, осесимметричные и одномерные потоки. Стационарные и нестационарные течения
- 3. Модели идеальной (невязкой) и ньютоновой жидкости, напряженное состояние в статике и движении, нормальные и касательные напряжения
- 4. Линии и трубки тока, объемный и массовый расход, уравнение неразрывности для струйки, интеграл Бернулли для невязкой жидкости, гидростатика
- 5. Понятие о пограничных слоях, условные толщины ПС, явление отрыва ПС.
- 6. Турбулентность. Представление параметров по Рейнольдсу Турбулентные напряжения
- 7. Профили (эпюры) скорости при ламинарном и турбулентном течениях в трубах и на пластине
- 8. Сопротивление движению тела в жидкости. Хорошо и плохообтекаемые тела
- 9. Уравнение Бернулли для жидкости с учетом вязких потерь (3 формы). Полный напор, статическое, динамическое и полное давление, их экспериментальное определение
- 10. Течения в трубопроводах, распределенные и местные потери, структура потока на входном и стабилизированном участках, режимы течения, формулы для трения
- 11. Характерные параметры газового потока (торможения, критические)
- 12. Безразмерные скорости М и М*(лямбда), изоэнтропические формулы, газодинамические функции (аналитика, таблицы, графики)
- 13. Сопло Лаваля в расчетном режиме, режимы истечения через конфузор
- 14. Изменение параметров потока при прохождении через скачок уплотнения

- 15.Предмет термодинамики
- 16.Основные параметры состояния тела
- 17. Понятие о термодинамическом процессе
- 18. Термическое уравнение состояния идеального газа
- 19. Закон Дальтона
- 20. Массовая доля
- 21. Молярная доля
- 22.Объемная доля
- 23.Связь между долями
- 24. Энергия
- 25. Работа и теплота
- 26.Энтальпия
- 27. Теплоемкость
- 28. Зависимость теплоемкости от температуры
- 29. Теплоемкость газовой смеси
- 30. Уравнение первого закона термодинамики для закрытой системы
- 31. Уравнение первого закона термодинамики для потока
- 32. Равновесные термодинамические процессы и их обратимость
- 33.Изотермический процесс
- 34.Изохорный процесс
- 35.Изобарный процесс
- 36. Адиабатный процесс
- 37. Работа, внутренняя энергия и теплота изотермического, изобарного, изохорного и адиабатного процессов
- 38. Закономерности термодинамических процессов
- 39. Зависимость между параметрами газа в политропном процессе
- 40. Работа, внутренняя энергия и теплота политропного процесса
- 41.Исследование политропного процесса
- 42.Положение второго закона термодинамики. Циклы прямые и обратные
- 43. Цикл Карно. Теорема Карно
- 44.Интеграл Клаузиуса
- 45.Энтропия
- 46.Изменение энтропии в процессах
- 47.Изображение на Ts -диаграмме основных процессов
- 48. Дифференциальные уравнения внутренней энергии, энтальпии, энтропии
- 49. Дифференциальные соотношения для теплоемкостей
- 50. Гомогенные и гетерогенные термодинамические системы
- 51. Термодинамическое равновесие
- 52. Уравнение состояния реальных газов
- 53.Пары. Парообразование при постоянном давлении. Параметры состояния жидкости и пара. *Ts* диаграмма пара
- 54.Изменение агрегатного состояния вещества
- 55. Парогазовые смеси
- 56. hs диаграмма пара и hs диаграмма влажного воздуха
- 57. Дифференциальных уравнений энергии и теплопроводности и условия

однозначности;

- 58. Дифференциальных уравнений энергии конвективной теплоотдачи;
- 59. Изоляции и его критический диаметр;
- 60. Теплопроводность оребренной стенки, виды оребрения;
- 61.Система дифференциальных уравнений конвективного теплообмена;
- 62. Ламинарный и турбулентный режимы течения;
- 63. Теория пограничного слоя

Примеры задач для решения на экзамене

Шкала оценивания результатов промежуточной аттестации

Оценка	Баллы полученные в течении
	семестра
Удовлетворительно	55-69
Хорошо	70-84
Отлично	85-100

Максимальное количество баллов за теоретический ответ и практическое задание — 40 баллов

При выставлении баллов за ответы на задания в билете учитываются следующие критерии:

- 1. Правильность выполнения практического задания
- 2. Владение методами и технологиями, запланированными в рабочей программе дисциплины
 - 3. Владение специальными терминами и использование их при ответе.
- 4. Умение объяснять, делать выводы и обобщения, давать аргументированные ответы
 - 5. Логичность и последовательность ответа
- 6. Демонстрация способности участвовать в разработке обобщенных вариантов решения проблем

От 37 до 40 баллов оценивается ответ, который показывает прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа.

От 34 до 36 баллов оценивается ответ, обнаруживающий прочные знания основных процессов изучаемой предметной области, отличается глубиной и полнотой раскрытия темы; владение терминологическим аппаратом; умение объяснять сущность, явлений, процессов, событий, делать выводы и обобщения, давать аргументированные ответы, приводить примеры; свободное владение монологической речью, логичность и последовательность ответа. Однако допускается одна – две неточности в ответе.

От 31 до 33 баллов оценивается ответ, свидетельствующий, в основном, о знании процессов изучаемой предметной области, отличающийся недостаточной глубиной и полнотой раскрытия темы; знанием основных вопросов теории; слабо сформированными навыками анализа явлений, процессов, недостаточным умением давать аргументированные ответы и приводить примеры; недостаточно свободным владением монологической речью, логичностью и последовательностью ответа. Допускается несколько ошибок в содержании ответа.